
Click here to view the PDF version.

Boundary value problems

Stationary heat equation in one dimension

Finite difference approximation

Numerical stability

Optional: Error analysis of the discretisation error

⚠ TODO ⚠

Galerkin methods

Discretisation of the weak form

Example: Sine basis

Comparison and conclusion

⚠ TODO ⚠

⚠ TODO ⚠

Optional: Finite elements

⚠ TODO ⚠

begin

using Plots

using PlutoUI

using PlutoTeachingTools

using LaTeXStrings

using LinearAlgebra

using HypertextLiteral

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

Table of Contents

https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.pdf

Boundary value problems
The goal of boundary value problems is to reconstruct the function values of a function on

an entire domain and for all times knowing only two things

The behaviour of (some) derivatives of and

Some information about at the boundary and for the initial time . For

example we may know the values and .

Classic examples of boundary value problems include

the heat equation, where is the temperature at time and position of a material, or

Poisson's equation where is the electrostatic potential at position and time

corresponding to a given time-dependent density of electronic charges, or

the diffusion equation where is the concentration of some solute at time at position

 in the solution.

In this lecture, to simplify matters and to make this more concrete, we will only consider one

example, namely the heat equation.

Stationary heat equation in one dimension

0 L

f(x)

We consider a metal bar extending over the interval . For a given moment in time we denote

the temperature at a point by . The heat flux we fruther denote by and

https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Poisson%27s_equation
https://en.wikipedia.org/wiki/Diffusion_equation

allow for an external source of heat , e.g. by one more more heat guns pointed at the metal

bar.

The rate of change of the internal heat at point of the rod is proportional to the change in

temperature , that is

where proportionality constants are the heat capacity and the mass density .

Due to conservation of energy the change of internal heat of a slice is equal to the

incoming heat minus the outgoing heat , such that we obtain

Dividing by and taking the limit thus yields

Combining with Fourier's law

where is the thermal conductivity, we obtain the equation

which is the heat equation in one dimension, a partial differential equation. The heat equation

describes the evolution of the temperature in a system (here the metal bar) and has as its

unknown the temperature distribution at any location at any point in time.

To simplify matters in this lecture we restrict ourselves to the case of the stationary heat equation,

i.e. the case where we assume the temperature to be in a state where it no longer changes

with time, i.e. . Dropping thus the zero terms and the dependency on we obtain the

stationary heat equation

To fully specify the problem and find a unique solution we still need to indicate what happens at

the extremities of the bar, i.e. at and at . Since these two points sit at the boundary of

our computational domain we usually call these conditions on boundary conditions.

We sketch the two most common cases:

Consider the case where the bar is in contact with heat baths of constant temperature. A

temperature for the left-hand side bath and for the right-hand side bath. In this case

we know and . We obtain the heat equation using Dirichlet boundary

conditions:

The bar may also be insulating at the boundary, such that no heat may be allowed to flow in

or out of the extremities. In this case the boundary conditions are and

 (zero heat flux). We obtain a heat equation with Neumann boundary

conditions, where the flux at the boundary is controlled:

where in the insulating case . We will not consider Neumann problems any

further here.

Since for such kind of problems knowing the boundary is imperative to obtain a unique solution

one refers to such problems as boundary value problems.

Finite difference approximation

We focus on the case of a Dirichlet boundary (1) with . Our goal is thus to find a function

 with

were . Similar to our approach when solving initial value problems (chapter 11) we

divide the full interval into subintervals of uniform size , i.e.

Our goal is thus to find approximate points such that at the nodes .

Due to the Dirichlet boundary conditions and . To satisfy these we

neccessarily need and . The unknowns of our problems are therefore those

with –- the internal nodes of the interval.

These internal nodes need to satisfy

As the derivatives of are unknown to us we employ a central finite-difference formula to replace

this derivative by the approximation

or in terms of :

Due to our imposed boundary conditions and , such that we can simplify the

equations for and as follows:

Collecting everything we obtain the system of equations

https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html

Optional: Does the problem (5) always have a solution ?

Finally, to write problem (5) more compactly we introduce a vector of all unknowns

, define the system matrix as well as the right-hand side

 with

With these objects the problem can be written as a linear system

which is to be solved for the unknows .

We notice that is symmetric and tridiagonal. Additionally one can show to be positive

definite. Problem (8) can therefore be efficiently solved using direct methods based on (sparse) LU

factorisation (chapter 6) or an iterative approaches (chapter 7), e.g. the conjugate gradient method.

We summarise:

Algorithm 1: Finite differences for Dirichlet bounary value problems

Given a boundary value problem with Dirichlet boundary conditions

https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html

and nodes with and solve the linear system with

 and given in (7) for and , .

The values approximate the solution at the nodal points .

One implementation of Algorithm 1, which solves the linear system using LU factorisation is:

fd_dirichlet (generic function with 1 method)

Let us consider the example

i.e. the case of

function fd_dirichlet(f, L, b₀, bₗ, N)

f: Function describing the external heat source

L: Length of the metal rod

b₀: Left-hand side boundary value

bₗ: Right-hand side boundary value

N: Number of nodal points for the finite-differences scheme

h = L / (N+1) # Step size

x = [i * h for i in 1:N] # Nodal points

Build system matrix A

diagonal = 2ones(N) / h^2

offdiagonal = -ones(N-1) / h^2

A = SymTridiagonal(diagonal, offdiagonal)

Build right-hand side

b = [f(xⱼ) for xⱼ in x] # Evaluate function f at nodal points

Set terms due to boundary conditions

b[1] = f(x[1]) + b₀ / h^2
b[N] = f(x[N]) + bₗ / h^2

Solve problem using LU factorisation

u = A \ b

(; u, x, h, A, b) # Return intermediates and results

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

In this case the exact solution can be found analytically as

u_exact (generic function with 1 method)

Let's solve it with finite differences

and plot the result:

begin

b₀ = 1

bₗ = 2

L = 2π

f(x) = sin(x)

end;

1

2

3

4

5

6

u_exact(x) = sin(x) + x/2π + 11

res_fd = fd_dirichlet(f, L, b₀, bₗ, N);1

N = 10

Note that the plot of the finite-difference solution does not include the nodal point at the

boundaries (and –- shown in green in the plot).

We observe that as the number of points N is increased, the solution visually becomes more and

more accurate. The output of our numerical procedure are the computed points .

These points are meant to approximate the true function values of

evaluated at the nodal points. A measure for the accuracy of our obtained solution is thus the

maximal deviation any of these computed points has from from the true . This measure is

called the global error defined by

let

plot(u_exact; xlims=(-0.1, L+0.1), legend=:topright,

 label="reference", lw=2, xlabel=L"x", ylabel=L"u(t)",

 title=L"-\frac{\partial^2 u}{\partial x^2} = \sin(x)")

plot!(res_fd.x, res_fd.u; label="Finite differences N=$N", mark=:o, lw=2,
ls=:dash)

scatter!([0, L], [b₀, bₗ], label="Boundary values", mark=:o, c=3)

end

1

2

3

4

5

6

7

8

9

Numerically, by observing how this global error changes as increases, we observe quadratic

convergence:

let

Ns = [round(Int, 5 * 10^k) for k in 0:0.5:4]

errors = Float64[]

for N in Ns

res_fd = fd_dirichlet(f, L, b₀, bₗ, N)

x = res_fd.x

u = res_fd.u

error = [u_exact(x[j]) - u[j] for j in 1:length(x)]

push!(errors, maximum(error))

end

p = plot(; title="Convergence of Dirichlet finite differences",

 xaxis=:log, yaxis=:log,

 xlabel=L"N", ylabel="Largest global error",

 legend=:bottomleft,

 xlims=(1, 3e5), ylims=(1e-13, 10))

plot!(p, Ns, errors; lw=2, mark=:o, c=1, label="Error")

plot!(p, Ns, 0.02(first(Ns) ./ Ns).^2, ls=:dash, lw=2, label=L"O(n^{-2})", c=1)

xticks!(p, 10.0 .^ (0:1:5))

yticks!(p, 10.0 .^ (0:-2:-12))
p

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In line with this discussion we define convergence for numerical schemes for boundary value

problems as follows:

Definition: Convergence order for boundary value problems

A numerical scheme approximating a boundary value problem (9) converges with order if

there exists a constant such that

provided that the solution is sufficiently regular.

For the central finite difference scheme discussed here .

Numerical stability
Let us push the convergence plot from above a little further:

While initially the convergence thus nicely follows the expected convergence curve, for larger

the convergence degrades and the error starts increasing again.

Similar to our discussion on numerical stability in the chapter on numerical differentiation this

error plot is the result of a balance between two error contributions:

The discretisation error due to the choice of , where as gets larger this error decreases

as .

The error due to finite floating-point precision, which turns out to increase as increases.

With respect to the second error contribution the underlying problem is related to solving the

linear system in Algorithm 1. As it turns out the condition number of the system matrix

 grows as :

As a result the finer we make the discretisation, i.e. the larger , the harder it becomes to solve

the system , such that the floating-point error in computing the solution itself

increases quadratically.

To make this clear let's consider . At this stage the condition number is about , such

that the typical error we make when representing any floating-point operation (such as the

computation of) gets amplified to a relative error in the solution of around : at most

around digits of the solution can be known exactly.

https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html

As a result around the floating-point error becomes the leading error contribution, such

that increasing beyond thus causes the total observed error of the numerical procedure to

increase again.

Optional: Error analysis of the discretisation error
Let us come back to the observed quadratic convergence in the regime of small where the

discretisation error dominates. Ignoring thus the floating-point error we conclude that the global

error

should scale as for some constant . In this section we will

make this more quantitative.

First, since the value at each nodal point is determined by solving (4), i.e. by replacing the exact

function values , and by the approximations , and , there are in

fact two contributions to the global error:

1. The error due to employing the finite difference formula in (3) instead of the exact partial

derivative .

2. The propagation of error from the neighbours / to it self and vice versa.

We start by understanding the first contribution, which is the local error due to employing the

finite difference formula (3).

Definition: Local truncation error

Given the exact solution of problem (9) evaluated at the nodal points for

 of the finite difference scheme of Algorithm 1, we define the local

truncation error at the node as

That is the local truncation error is the residual of the numerical scheme (4) when we replace

the approximated solution by the exact solution .

In our case one can show for the local truncation error:

Lemma 2: Bound on the local truncation error

If the solution is four times differentiable the local truncation error (10) satisfies

Proof sketch: Since is the exact solution to (9) we have that for all

. Therefore

Considering a Taylor expansion to fourth order of around than leads to the

result.

Next we tackle the second aspect, namely how this local truncation error propagates to give global

error.

By rearranging the definition of the local truncation error (10), we find that the exact solution

satisfies the discrete problem

In contrast according to (4) the approximate solution satisfies

Subtracting (4) from (12) thus leads to

where we used the definition of the error . At the boundary, where we set

 and we have , such that the error satisfies

which is again a discretised Dirichlet bounary value problem (5) with the conditions that

 and .

We can therefore apply equation (14) of Theorem 1 (see the folded section Optional: Does the problem

(5) always have a solution ?) to problem (13) and conclude

which relates the local truncation error to the error at each nodal point.

Combining this result with Lemma 2 yields

Theorem 3: Global error of finite differences

Under the assumption that the exact solution of the Dirichlet boundary value problem (9) is

four times differentiable, the finite differences scheme of Algorithm 1 converges as

where . It thus achieves quadratic convergence.

⚠ TODO ⚠

Show application of finite difference method to a second example Boundary Value Problem. A

good example could be the Allan-Cahn equation (Demo 10.5.5 in Driscoll Brown)

Galerkin methods

Let us return to the general heat equation using Dirichlet boundary conditions:

We saw that with finite differences the increasing condition number of the system matrix as we

increase makes it impossible to obtain the solution to arbitrary accuracy. In the above example

we were unable to obtain a solution to higher accuracy than , irrespective of what value for

we chose. In this section we will develop an alternative approach to solve boundary value problems,

which is more general.

Let us assume we are given some smooth function , the so-called test function, for which we

will additionally assume that it vanishes at the boundary, i.e. . If we multiply

the first line of (17) by this function and integrate over the full computational domain , this

yields:

TODO("Show application of finite difference method to a second example Boundary

Value Problem.

 A good example could be the Allan-Cahn equation (Demo 10.5.5 in Driscoll Brown)

")

1

2

3

4

5

where we used partial integration in step and the property in the final step.

Let us define the set of all test functions as

If is a solution to (17) than our discussion implies that (18) is satisfied for all

functions from :

Equation (19) is known as the weak form of the 1D heat equation equation (17) and solving it is

interesting in its own right:

Definition: Weak form and weak solution

If a function satisfies

for all choices of the test function we call a weak solution of the boundary value problem

(17).

The original problem (17) is additionally called the strong form of the heat equation BVP and its

solution the strong solution.

Observation: Strong and weak solutions

If is a solution to the strong form (17) of a BVP, than it is also a solution to the weak form (19).

However, not every weak solution is also a strong solution.

The weak form (19) looks unusual at first sight and additionally one might wonder why it is useful,

since it can produce solutions, which do not satisfy the original strong problem (17).

But surprisingly for many problems from physics or engineering the situation turns out to be the

reverse: it turns out that the somewhat "looser" form provided by the weak formulation is actually

more physical. In some cases –- such as the atomistic modelling of materials –- using the strong

form can lead to unphysical artifacts, which are in fact avoided when using the weak form.

While we do not have time to discuss this further in this course, the interested reader is referred to

the master course MATH-500: Error control in scientific modelling where some of this is discussed.

Discretisation of the weak form
In order to solve (19) our goal is to rewrite the problem in the form of linear algebra –- vectors and

matrices. For simplicity we will only consider the case in this section, i.e. we restrict

ourselves to the heat equation with a zero Dirichlet boundary

and corresponding weak form

One difficulty in this equation is that the condition corresponds to an infinite number of

constraints to satisfy (as the set has infinitely many members). One idea is to approximate this

condition by satisfying only finitely many constraints.

To do so we assume that can be written as a linear combination

where are a selection of linearly independent functions from , i.e. smooth

functions which each satisfy . Inserting (22) into the first line of (21) leads to

https://teaching.matmat.org/error-control/

which should be true independent of the values of . As a result the above condition can be

achieved if and only if the term in the square bracket is zero all our functions , that is if

Notice, that the condition (23) is independent of the actual values taken by the coefficients .

Provided that (23) holds we thus do not need to worry about determining the values of . In

fact in all following development these coefficients will play no further role.

With this development we can replace the infinite number of constraints encoded by the

in equation (21) by the approximate version (23), which only involves conditions to satisfy.

Considering we make an additional approximation, namely that –- similar to –- this

function can also be approximated by a linear combination of finitely many functions. Here, for

simplicity we employ the same selection of functions, that we used for leading to an ansatz

Inserting (24) into (23) we obtain

or arranged differently

Since an immediate consequence is that such a satisfies the boundary

condition independent of the choice of the coefficients . Solving equation (25)

therefore automatically ensures that the second line of the weak problem (21) is satisfied.

Additionally this equation satisfies (23) –- our approximation to the first line of (21).

In summary a solution to equation (25) thus satisfies (our approximation to) both conditions

required to be a solution to the weak problem (21). Equation (25) is thus given a special name:

Definition: Galerkin conditions

Given a basis of linearly independent functions from the test function set

, the linear combination is an approximate solution to the weak problem

(21) if the coefficients satisfy the Galerkin conditions

Collecting the unknown coefficients into a vector and

introducing the matrix and the vector with elements

we can also write the Galerkin conditions more conveniently as the linear system

which one needs to solve for .

Example: Sine basis
Let us consider the Dirichlet heat equation

i.e. where , and .

For the basis functions we select the sine basis

It is easy to see that all of them satisfy . With these basis functions we can

obtain the entries of and in equation (26) as

For example for we find the matrix and vector

Since is diagonal we can directly compute the coefficient vector as

and the approximate solution becomes

Generalising to arbitrary we find the solution coefficients

leading to the solution function

which can be implemented as:

sine_solution (generic function with 1 method)

Choosing different values for we obtain:

Show reference:

Show :

We see that already for 5 basis functions it becomes visually very hard to see the difference to

the reference solution with basis functions.

Numerically we observe a quadratic convergence in a log-log plot:

function sine_solution(m, x)

Compute the function value of the numerical solution

for given m and x by evaluating (27)

result = 0.0

for i in 1:m

result += 2 * (-1)^(i+1) / i^3 * sin(i * x)

end

result

end

1

2

3

4

5

6

7

8

9

10

let

x = range(0, π; length=1000)

reference(x) = sine_solution(800, x)

ms = [5, 10, 20, 40, 50, 60, 80, 100, 300]

errors = Float64[]
for m in ms

error = [abs(sine_solution(m, xᵢ) - reference(xᵢ)) for xᵢ in x]

push!(errors, maximum(error))

end

p = plot(ms, errors, yaxis=:log, xaxis=:log, lw=2, mark=:o, title=L"Convergence

in m", xlabel=L"m", ylabel="maximal error", label="Error sin Galerkin")

plot!(p, ms, 1 ./ms.^2, ls=:dash, lw=2, label=L"O(m^2)")

ylims!(p, (1e-6, 1e-1))

xticks!(p, 10.0 .^ (0:0.5:3))
yticks!(p, 10.0 .^ (0:-1:-6))

p

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Comparison and conclusion

⚠ TODO ⚠

Some conclusion chapter to provide direct comparison between finite differences and

Galerkin methods and from that some conclusion why Galerkin methods can be better

(numerical stability, less unknowns for a targeted accuracy etc.)

TODO("Some conclusion chapter to provide direct comparison between finite

differences and Galerkin methods and from that some conclusion why Galerkin methods

can be better (numerical stability, less unknowns for a targeted accuracy etc.)")

1

⚠ TODO ⚠

To introduce FEM we need the concept of a mass matrix in the Galerkin development above

as the basis functions are not orthonormal. See chapter 10.5 of Driscoll Brown

Optional: Finite elements
A widely employed set of basis functions for Galerkin approximations are the hat functions

, which we already discussed in the chapter on Interpolation (chapter 5). Recall, that given

a set of nodes the hat functions are defined as

for . In this discussion we will again only consider equispaced nodes for simplicity, i.e.

we take the case with and where . Defining

 the hat functions can thus equally be expressed as

for .

Due to the cardinality property of the hat functions , i.e. , the expansion

(24) of the unknown solution function can be simplified to

TODO("To introduce FEM we need the concept of a mass matrix in the Galerkin

development above as the basis functions are not orthonormal.

 See chapter 10.5 of Driscoll Brown
 ")

1

2

3

4

https://teaching.matmat.org/numerical-analysis/05_Interpolation.html

where , i.e. the numerical solution at the nodal points. Note that the last sum in (29) is

deliberately truncated to omit the hat functions and . The nodal points of these two

functions are and , respectively, where these functions take by definition the value

. As a result these functions are unable to satisfy the condition underlying

 and are thus excluded.

The importance of the hat functions for Galerkin methods stems from the fact that each hat

function is only non-zero in the interval . As a result when evaluating the

Galerkin conditions (26) one never has to integrate over the entire domain , but only a much

smaller subset of this interval where the involved hat functions are non-zero –- a noteworthy

reduction of the computational effort.

As an example consider the evaluation of the elements of the matrix .

First note that the derivatives are non-zero only where itself is non-zero, i.e. .

Therefore the product is only non-zero in the intersection of and .

This intersection is empty, thus the matrix element zero, whenever , i.e. when the

two indices are more than two apart from each other. For the intersection contains only

a single point, which similarly implies . As a consequence

where and similarly by symmetry

again for

Now we consider the remaining three cases, namely

for as well as

for . We recover a tridiagonal matrix

⚠ TODO ⚠

Properly work the mass matrix stuff into this.

Mass matrix

and

Finally we consider the elements of the vector . Since again is only non-zero in ,

we need to perform the two integrals

TODO("Properly work the mass matrix stuff into this.")1

for . One can show that to a very good approximation one can replace by the

average value of the function over the respective integrals, i.e.

In particular this approximation converges quadratically as , which turns out to be exactly

the order of approximation of the finite element method itself. Therefore putting in additional

efforts to compute these integrals more accurately would not even improve the accuracy of our final

result.

Putting these developments tothere we obtain for that

By solving the linear system

we then obtain the coefficients in the expansion (29). Notably, due to

the cardinality property of the hat functions , i.e. these coefficients are equal to

evaluating our numerical approximation at the nodal points .

An implementation of this approch is given below:

heat_equation_1d_fem (generic function with 1 method)

Let us return to the example we considered with the sine basis, i.e.

i.e. the Dirichlet heat equation (20) with , and .

As a reference solution we consider the solution using the sine basis with , which we

know to be very accurate for this problem:

reference (generic function with 1 method)

n = 6

function heat_equation_1d_fem(f, k, L, n)

f: Function describing the external heat source

k: thermal conductivity

L: Length of the metal rod

N: Number of nodal points for the finite element scheme

h = L / n # Step size

x = [i * h for i in 0:n] # Nodal points (x₀, x₁, ..., xₙ)

x_inner = x[2:n] # Inner nodal points (x₁, ..., xₙ₋₁)

Build A and f: Note that these are a (n-1) × (n-1) matrix

respectively a vector of length (n-1)

A = k/h * SymTridiagonal(2ones(n-1), -ones(n-2))

M = h/3 * SymTridiagonal(2ones(n-1), -ones(n-2))

f = h/4 * [f(x[i-1]) + 2f(x[i]) + f(x[i+1])

 for i in 2:n] # Skip first/last nodal point, i.e. x[1] = x₀

u = (A + M) \ f

(; x=x_inner, u)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

reference(x) = sine_solution(300, x)1

let

Parameters of the problem

f(x) = x

k = 1

L = π

Plot the reference

p = plot(reference; lw=2.5, label="Reference", title="Solution", xlims=(-0.05,

L + 0.05))

Compute FEM solution and plot it

result = heat_equation_1d_fem(f, k, L, n)

plot!(p, result.x, result.u; lw=1.5, ls=:dash, label="Solution n=$n", mark=:o)

scatter!([0, L], [0, 0], label="Boundary values", mark=:o, c=3)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The finite element method is one of the most widely employed approaches in science and

engineering to solve differential equations. With this short instroduction we only scratched the

surface.

let

f(x) = x

k = 1

L = π

ns = [5, 10, 20, 40, 50, 60, 80, 100, 200, 300, 500, 700]
errors = Float64[]

for n in ns

result = heat_equation_1d_fem(f, k, L, n)

error = abs.(result.u - reference.(result.x))

push!(errors, maximum(error))

end

p = plot(ns, errors, yaxis=:log, xaxis=:log, lw=2, mark=:o, title=L"Convergence

in n", xlabel=L"n", ylabel="maximal error", label="Error")

plot!(p, ns, 1 ./ns.^2, ls=:dash, lw=2, label=L"O(n^2)")

xticks!(p, 10.0 .^ (0:0.5:3))

yticks!(p, 10.0 .^ (0:-1:-6))

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

More information on the approach can be found for example in chapter 10.6 of Driscoll, Brown:

Fundamentals of Numerical Computation.

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

https://tobydriscoll.net/fnc-julia/bvp/galerkin.html
https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

