
Click here to view the PDF version.

Initial value problems

Solving initial value problems numerically

Existence and uniqueness of solutions

Forward Euler

Error analysis

Local truncation error

Global error

Runge-Kutta methods

Optional: Midpoint method

Optional: Higher-order Runge-Kutta methods

Stability and implicit methods

Backward Euler

Optional: Higher-order differential equations

Appendix

begin

using Plots

using PlutoUI

using PlutoTeachingTools

using LaTeXStrings

using DifferentialEquations

using ForwardDiff

using HypertextLiteral

using LinearAlgebra

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

9

10

Table of Contents

https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.pdf

Initial value problems

In computational science we are often faced with quantitites that change continuously in space or

time. For example the temperature profile of a hot body or the population of an animal species over

time. Such problems are often modelled by differential equations. If there is only a single

indepentent variable we call the model an ordinary differential equation. The usual setup is that

for initial value we have some knowledge about our problem, e.g. by performing a

measurement, and the key question is thus how the situation evolves for .

Example: Ducks on the Leman

Suppose we want to model the population of ducks on the Leman, i.e. let denote the

number of ducks on the lake at time . To simplify the mdoelling we allow for "fractional ducks",

i.e. we allow to be any real number.

First we assume a constant growth rate for the number of ducks at any time , i.e. that the

number of ducks born minus the number of ducks deceased in one unit of time is proportional

to –- the current population of ducks. This leads to the ordinary differential equation

(ODE)

where is the initial number of ducks we observed at . In comparison to the general

definition shown above we thus have .

The solution of this linear equation is

i.e. exponential growth.

Clearly as the size of the Leman is finite, this is not a reasonable model as both food and space

on the lake is limited, which should cap the growth. To improve the model we assume that the

death rate itself is proportional to the size of the population, i.e. for a constant .

Keeping the idea of a constant birth rate one thus obtains an improved model

i.e. we have the case of when considering the above definition.

This is the logistic equation, which in fact has multiple solutions. The solution relevant for

population models has the form

As a plot shows, this solution varies smoothly from some initial population to a final

population :

This problem is an example for the a class of problems one calls initial value problem, because

based on some initial knowledge at one wants to know how a quantity (e.g. here the

population) evolves.

Definition: Initial-value problem

A scalar, first-order initial value problem (IVP) can be formulated as

We call the indepentent variable, the dependent variable and the initial conditions.

let

u₀ = 1

b = 4

d = 0.5

u(t) = b/d / (1 + (b/(d*u₀) - 1) * exp(-b*t))

plot(u; xlims=(0, 3), label="b=4, d=0.5, u₀=1", xlabel=L"t", ylabel=L"u",

title="Duck population", lw=2)

end

1

2

3

4

5

6

7

8

A solution of an initial-value problem is a differentiable, continuous function which

makes both (for all) and true equations.

For the specific case where for two functions and the differential

equation (1) is called linear.

Often (but not always) plays the role of time and (1) thus models the time-dependence of a

quantity .

Solving initial value problems numerically

For simple examples like the Duck problem above analytic solutions can still be found with a little

practice. However, initial value problems quickly become more involved. For example consider the

problem

for which an analytical solution is not so easy to obtain.

Before we introduce a few key ideas how to solve such problems, we first need a reference

technique to compare against. Here the DifferentialEquations.jl Julia package provides a range of

production-grade numerical solvers for ODE problems.

We first translate our problem (2) into Julia code.

This we can now solve using DifferentialEquations , the details of which is beyond the scope of

this course and hidden in the function solve_reference .

solve_reference (generic function with 1 method)

The obtained solution can easily be visualised:

begin

f(u, t) = sin((t + u)^2) # defines du/dt
u₀ = -1.0 # initial value

tstart = 0.0 # Start time

tend = 4.0 # Final time

end;

1

2

3

4

5

6

sol = solve_reference(f, u₀, tstart, tend);1

https://github.com/SciML/DifferentialEquations.jl

Existence and uniqueness of solutions

Let us remark that the existence of a solution to problem (1) is not guaranteed for all with

. For example consider the problem

which has solution . This solution only exists for . When attempting a numerical

solution beyond of such a problem we are faced with problems:

plot(sol.t, sol.u; label="solution", lw=2, xlabel="t", ylabel=L"u(t)",

 title=L"\frac{du}{dt} = \sin((t+u)^2)")

1

2

At t=1.0000007880693895, dt was forced below floating point epsilon 2.220446049

250313e-16, and step error estimate = 1.244050736875679. Aborting. There is eit

her an error in your model specification or the true solution is unstable (or t

he true solution can not be represented in the precision of Float64).

A second issue is that the solution may not necessarily be unique. Consider for example the

equation

which has the two solutions and .

let

f(u, t) = u^2

u₀ = 1.0

tstart = 0

tend = 10

sol = solve_reference(f, u₀, tstart, tend)

plot(sol.t, sol.u; lw=2, label="", xlabel=L"t", yaxis=:log, ylabel=L"u(t)",

xlims=(0, 2))

end

1

2

3

4

5

6

7

8

9

Both cases cause additional difficulties to numerical techniques, which we do not want to discuss

here. For the scope of the course we will assume that all IVP problems we consider, have a unique

solution.

If you are curious, the precise conditions for existence and uniqueness are given below:

Optional: Theorem governing Existence and uniquens of first-order ODEs

Forward Euler

Let us return to the question how to solve the IVP (1)

where the time derivative is a known function, e.g. in the case of the duck

population. Our goal is thus to trace how how the intial condition (at) evolves in time

until the final time is reached.

Since the entire time interval could be large, we will not attempt to solve this problem in one

step. Instead we will perform a time discretisation. That is we split this time interval even further

into smaller subintervals with

and consider algorithms, which propagate the solution across one such interval , i.e.

which take the solution at time to the solution at .

Here, for simplicity we only consider a discretisation using intervals of equal length , i.e.

such that and . The parameter is often called the stepsize. At time we need to

satisfy

where we assume that we know , the solution at , but the derivative is unknown.

Our task is to find .

We make progress by approximating the dervative of using one of the finite differences formulas

discussed in the chapter on Numerical differentiation.

The simplest approach is to employ forward finite differences, i.e.

Introducing a short-hand notation for and for we obtain from (3):

Notably the first line can be rearranged to , thus providing us with a

numerical scheme how to obtain –- an approximation to the solution at –- from –-

an approximation to the solution at .

This scheme is known as the forward Euler method:

Algorithm 1: Forward Euler method

Given an initial value problem , with and nodes

, iteratively compute the sequence

Then is approximately the solution at .

u⁽ⁿ⁾ ≠ u(tₙ)

Notice, that the replacement of the derivative in (6) by the forward finite difference

approximation implies that the computed points are not equal to the

function values of the exact solution .

https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html

A basic implementation of Euler's method is shown below. It expects the definition of the derivative

(f), the initial value (u₀), the time interval and the number of time intervals . The output is

the vector of nodes and the vector of approximate solution values .

forward_euler (generic function with 1 method)

Let us apply this approach to the test problem (2)

which we solved previously using DifferentialEquations . The variables f , u₀ , tstart and tend

already contains a setup of this initial value problem

f (generic function with 1 method)

-1.0

(0.0, 4.0)

function forward_euler(f, u₀, a, b, N)

f: Derivative function
u₀: Initial value

a: Start of the time interval

b: End of the time interval

Discrete time nodes to consider:

 h = (b - a) / N

 t = [a + i * h for i in 0:N]

Setup output vector with all elements initialised to u₀

u = [float(copy(u₀)) for i in 0:N]

Time integration

u[1] = u₀

 for i in 1:N

u[i+1] = u[i] + h * f(u[i], t[i])

 end

 (; t, u)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

f1

u₀1

(tstart, tend)1

and we can directly proceed to solving it:

and plot the result:

Number of subintervals: Neuler = 20

We observe that the approximated solution becomes more and more accurate as we increase the

number of sub-intervals and as the step size decreases. We obtain linear convergence (see

plot below).

But we also observe that for too small values of (e.g.) that the Euler solution notably

deviates from the reference.

res_euler = forward_euler(f, u₀, tstart, tend, Neuler);1

p_cvg_fw_euler =

Forward Euler is just one example of a broader class of so-called explicit numerical methods for

initial value problems, which broadly speaking differ by the operations performed to obtain

from . We denote

Explicit methods for solving initial value problems

An explicit method to solve (1) is a method of the form

where is a real-valued function and .

For forward Euler we simply have .

Error analysis

As discussed above applying Forward Euler to an initial value problem (1) with subintervals leads

to a sequence of computed points , which approximate

 –- the solution evaluated at the nodes . Our goal is to quantify

the error

between the computed points and the exact values of the solution.

In employing the Forward Euler scheme (Algorithm 1) we actually make two approximations,

namely:

1. Instead of evaluating the exact derivative we employ a finite differences formula in

(5). This error contribution is usually called the local truncation error.

2. When computing in (6) we cannot employ –- the exact value of the solution at

time –- since this value is unknown to us. Instead we employ as an approximation to

.

Both approximations contribute to the total error (9).

Local truncation error
We want to isolate the error in the Forward Euler scheme introduced by employing the finite

difference formula from the other error contribution. For this let us assume for a second that we

actually had access to the exact solution values , which we could use as part of a Forward

Euler step (7).

The error of the Euler step is then simply . To make the scaling of errors

comparable as it is usually more convenient ot investigate the size of this value relative to

the chosen stepsize , leading to the following definition:

Definition: Local truncation error

The local truncation error of an explicit method (8) is the quantity

Making reference to (1) we first note for Forward Euler:

while a Taylor expansion of around yields

such that the local truncation error of Forward Euler can be obtained as

Global error
We return to the question of estimating the error

In contrast to the local truncation error –- which really only estimates the error committed in a

single time step –- the error is a global error, since it accumulates all error contributions up to

the -th timestep.

Naively one might think that simply adding all local error contributions with provides

an estimate for this global error . However, this neglects something important. Namely, that in

our explicit algorithms (8), the already erroneous estimate is used to estimate . The error

of step propagates to step . For small values of this can cause the error in

later time steps to grow exponentially. For example consider:

More precisely one can formulate:

Theorem 2 (Convergence of explicit methods, simple version)

If one has an explicit method with local truncation error satisfying

as then as the global error satisfies

where and are constants.

We note:

let

res_euler = forward_euler(f, u₀, tstart, tend, 7)

plot(sol.t, sol.u, label="reference", lw=2, xlabel="t", ylabel=L"u(t)",

 title=L"\frac{du}{dt} = \sin((t+u)^2)", ylims=(-2, 1))

plot!(res_euler.t, res_euler.u; label=L"Euler $N=7$", mark=:o, lw=2, ls=:dash)

end

1

2

3

4

5

6

If the local truncation error converges with order , then the explicit methods also

converges globally with order .

However, the global error has an additional prefactor , which grows

exponentially in time. This is an effect of the accumulation of error from one time step to the

next. In particular if or results can get rather inaccurate even for higher-order

methods beyond Forward Euler where . This point we will pick up in the section on

Stability and implicit methods below.

For Theorem 2 to hold there are a few more details to consider (e.g. problem (1) should have a

unique solution). More information can be unfolded below.

Optional: More details on Theorem 2

Observation: Convergence of Forward Euler

As discussed in (11) Forward Euler has local truncation error .

Therefore and by using Theorem 2 we conclude that

Forward Euler converges linearly.

This is demonstrated graphically below:

Runge-Kutta methods

Similar to the previous chapters we now ask the question: How can we improve the convergence of

a numerical method for an IVP ? The answer to this question leads to the major and most widely

employed types of methods for solving initial-value problems, the Runge-Kutta (RK) methods.

We start with a second-order RK method, namely the midpoint method.

Optional: Midpoint method
The goal of the midpoint method is to construct a second-order method for solving the IVP (1)

We stay within our general framework of (8), i.e. we want to iterate for

The ideal method would obtain the exact from the exact , implying a local truncation

error . To build such a method we expand

where we used the definition of the IVP to replace . If in this equation we keep only the first two

terms we recover the Forward Euler method (7). To obtain more accuracy we therefore need to

compute or approximate as well. Using the chain rule we note

where notably step is neccessary because both and its argument depend on . Inserting this

expression into (15) we obtain

Since computing and implementing the partial derivatives and can in general become ticky,

we will also approximate these further. Expanding in a multi-dimensional Taylor series we

observe

With the choice and this expressions becomes equal to lowest order

with the term in the square brackets of (16). This leads to

This is the midpoint method we mentioned earlier:

Algorithm 2: Midpoint method

Given an initial value problem , with and nodes

, iteratively compute the sequence

with

From our derivation the local truncation error for the midpoint method can be identified as

From Theorem 2 we observe that the midpoint method is indeed a second-order method.

Runge-Kutta methods, such as the midpoint methods, are what one calls multi-stage methods. To

make this term clear, let us rewrite equation (7) in two stages by isolating the green part:

Written like this we notice that the first stage (in green) performs a Forward Euler step with half

the stepsize, namely from time to . The second stage then performs an Euler-style

update over the whole timestep, but employing the slope from the first stage in the

computation of .

This interpretation also explains why the method is called midpoint method.

We obtain an implementation of the midpoint method as:

midpoint (generic function with 1 method)

In comparison with Forward Euler we notice this method to be clearly more accurate for the case of

rather small number of timesteps:

function midpoint(f, u₀, a, b, N)

f: Derivative function

u₀: Initial value

a: Start of the time interval

b: End of the time interval

Discrete time nodes to consider:

 h = (b - a) / N

 t = [a + i * h for i in 0:N]

Setup output vector with all elements initialised to u₀

u = [float(copy(u₀)) for i in 0:N]

Time integration ... this is what changes over forward_euler

u[1] = u₀

 for i in 1:N

uhalf = u[i] + h/2 * f(u[i], t[i])
u[i+1] = u[i] + h * f(uhalf, t[i] + h/2)

 end

 (; t, u)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Optional: Higher-order Runge-Kutta methods
The ideas we used for constructing the midpoint method point to a clear path how one could

construct even higher-order methods: All we need to do is to introduce further intermediate stages,

i.e. half, third or other intermediate timesteps. In this way we can generate additional equations

and effectively match the higher-order derivatives in the Taylor expansion (15), which will in turn

reduce the local truncation error . The methods generated in this form are called Runge-Kutta

methods.

The algebra required to work out the details grows in complexity, so we will not attempt to do this

here and only present a general overview. Constructing an -stage Runge-Kutta methods leads to

the set of equations

where specifying both the number of stages as well as the constants , and uniquely

determines an RK method. Both one-step methods we discussed so far actually match this

framework:

Forward Euler: , and no and no .

Midpoint method: , , , and .

Additionally we want to specify one additionall fourth-order RK method, often called RK4, which is

the most commonly used IVP approach:

Algorithm 3: Fourth-order Runge-Kutta method (RK4)

Given an initial value problem , with and nodes

, iteratively compute the sequence

Let us mention in passing, that our reference solution routine solve_reference is using a method

called Tsit5() , which is also based on a Runge-Kutta scheme.

An implementation of RK4 is given by:

rk4 (generic function with 1 method)

Let us compare all methods we saw in this chapter:

N = 7

function rk4(f, u₀, a, b, N)

f: Derivative function

u0: Initial value

a: Start of the time interval

b: End of the time interval

Discrete time nodes to consider:

 h = (b - a) / N

 t = [a + i * h for i in 0:N]

Setup output vector with all elements initialised to u₀

u = [float(copy(u₀)) for i in 0:N]

Time integration ... this is what changes over forward_euler

u[1] = u₀

 for i in 1:N

v₁ = h * f(u[i], t[i])
v₂ = h * f(u[i] + v₁/2, t[i] + h/2)

v₃ = h * f(u[i] + v₂/2, t[i] + h/2)

v₄ = h * f(u[i] + v₃, t[i] + h)

u[i+1] = u[i] + (v₁/6 + v₂/3 + v₃/3 + v₄/6)

 end

 (; t, u)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

RK4 converges faster than the other two methods. As the name suggests it is indeed a fourth-order

method:

On the other hand the four stages of RK4 also have a disadvantage: For each timestep four times as

many evaluations of the function are required than Forward Euler. Since this is typically the cost-

dominating step we might ask if RK4 should always be employed or if other schemes with less

stages (like Midpoint or Euler) are sometimes more appropriate.

To answer this question we take our previous plot and multiply the x-values by the number of

stages in order to track the error versus the number of evaluations of the function . With this we

obtain:

We observe that even though RK4 needs four evaluations per time step it still provides the best

accuracy versus -evaluations ratio for almost the entire range of evaluations we considered.

Stability and implicit methods

Let us consider the innocent looking initial value problem

This model governs for example the decay of a radioactive species with initial concentration over

time. The rate of decay is ≈ 6.31.

By simple integration we find the exact solution of this problem as:

u (generic function with 1 method)

This function rapidly decays to zero as :

Applying our numerical methods from the previous sections, we would expect to recover this

behaviour. So let's check this.

We first set up the problem in a bunch of variables prefixed by dcy_ :

u(t) = 10 * exp(-C * t)1

plot(u; xlims=(0, 10), lw=2, title="du/dx = $(round(-C; sigdigits=3))",

titlefontsize=12, label="Reference", xlabel=L"t", ylabel=L"u(t)")

1

begin

dcy_f(u, t) = -C * u

dcy_u₀ = 10.0

dcy_tstart = 0.0

dcy_tend = 10.0

end;

1

2

3

4

5

6

... and try it on our previously implemented methods:

C = :

Ndecay = :

6.309573444801933

15

We notice for too few nodal points or too large decay constants our numerical methods all fail to

recover the decay behaviour. In other words while the exact solution satisfies , the

numerical methods are all qualitatively wrong: instead of the reproducing the correct long-time

limit numerically, i.e. , the numerical solution actually grows over time.

Recall that in Theorem 2 we found that the global error satisfies

In the limit of infinite time, i.e. , the upper bound on the RHS thus grows exponentially.

This bound is in general pessimistic, i.e. not all numerical methods may actually reproduce the

exponentially increasing error behaviour, but it clearly shows that unless one demands additional

properties from a method for solving IVPs, one may fail to reproduce a limiting behaviour like

.

Without going into further details the property we ask for is called stability:

Definition: Absolute stability

Given an initial value problem (1) with exact solution satisfying for any

initial condition . In other words we have a problem where the solution converges to

independent of the initial value .

Then a numerical method is called absolutely stable for a fixed stepsize if

A method is further called unconditionally absolutely stable if it is stable for all .

In the case of our decay problem, one can show for example that the forward Euler method is

absolutely stable if

which explains the condition we chose to switch the axis limits in the plot above.

We also observe that none of our explicit methods is unconditionally absolutely stable.

Backward Euler
The construction and implementation of unconditionally absolutely stable methods is in general

more involved than the methods we considered so far. We will therefore only construct a single

approach here.

For this we return to the derivation of the Forward Euler method. Recall that in order to solve the

IVP (1)

we introduced a time discretisation into subintervals , such that in each interval we

needed to solve the problem

Instead of employing the forward finite differences formula, leading to the Forward Euler method

(7), we now instead employ the backward finite differences, leading to

Following the same idea as before, i.e. to employ for the approximation of the

-st time step and instead of employ we obtain from (20) and (21):

which is the Backwards Euler method.

Notice, that in contrast to the case of Forward Euler we cannot immediately deduce an explicit

update formula like (7) from this expression, since the dependency on is both on the LHS as

well as in . This is why such methods are called implicit methods as is only implicitly

defined.

To obtain from one needs to solve (22) iteratively: For this we introduce the map

and notice that its fixed-point is exactly . For each time step we thus need

to solve a fixed-point problem using one of the methods we described in Root finding and fixed-

point problems.

In summary our algorithm becomes:

Algorithm 4: Backward Euler method

Given an initial value problem , with and nodes

, we iterate for :

Find a fixed-point of the map , e.g. using the Newton

method.

Set

An implementation of Backward Euler employing Newton's method to solve the fixed-point

problem is given below. The implementation of Newton's method is repeated in the appendix.

https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html

backward_euler (generic function with 1 method)

Nbw = 15

function backward_euler(f, u₀, a, b, N; tol=1e-10)

f: Derivative function

u₀: Initial value

a: Start of the time interval

b: End of the time interval

Discrete time nodes to consider:

 h = (b - a) / N

 t = [a + i * h for i in 0:N]

Setup output vector with all elements initialised to u₀

u = [float(copy(u₀)) for i in 0:N]

Time integration

u[1] = u₀

 for i in 1:N

g(x) = u[i] + h * f(x, t[i+1])

dg(x) = ForwardDiff.derivative(g, x)

u[i+1] = fixed_point_newton(g, dg, u[i]; tol).fixed_point

 end

 (; t, u)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

While Forward Euler stays absolutely stable only for large values of Nbw (respectively small values

of), Backward Euler stays stable no matter what value of Nbw is chosen.

Let us conclude by mentioning that similar to Forward Euler, Backward Euler is also only a first

order method. Higher-order implicit methods can also be constructed. E.g. the Runge-Kutta family

of methods can be extended to the implicit setting as well. An example is the Crank–Nicolson

method, a second-order implicit Runge-Kutta method.

In standard libraries, such as DifferentialEquatios.jl a zoo of ODE methods is typically available.

let

C = 6.5

soln_euler = forward_euler(dcy_f, dcy_u₀, dcy_tstart, dcy_tend, Nbw)

soln_bw_euler = backward_euler(dcy_f, dcy_u₀, dcy_tstart, dcy_tend, Nbw)

p = plot(u; lw=2, title="du/dx = $(round(-C; sigdigits=3))", titlefontsize=12,

label="Reference", xlabel=L"t", ylabel=L"u(t)", xlims=(-0.1, 10.1), ylims=(-1,

25))

plot!(p, soln_euler.t, soln_euler.u; mark=:o, c=2, lw=2, markersize=3,

ls=:dash, label="Forward Euler")

plot!(p, soln_bw_euler.t, soln_bw_euler.u; mark=:o, c=3, lw=2, markersize=3,

ls=:dash, label="Backward Euler")

end

1

2

3

4

5

6

7

8

9

10

11

https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/

Optional: Higher-order differential equations

Consider the setting of a mass hanging on a spring from the ceiling:

In its rest position show above, gravity is exactly cancelled by the upward force excerted by the

spring, such that we can ignore gravity for our discussion. Now displacing the mass by a length

leads to a restoring force where is the spring constant of the spring. By Newton's law this

accelerates the mass by . Employing for simplicity this leads to the second-order ODE

which is usually referred to as the simple harmonic oscillator model, abbreviated HO. To solve this

problem numerically we first introduce the velocity function and rewrite it as a system of first-

order ODEs:

where we choose to start at the rest position, but with an initial velocity of . Collecting the

position and velocity into a single vector-valued variable, i.e.

and introducing the function with

we can rewrite this as

TODO("Image")1

Notice, that this has exactly the same structure as (1), just all quantities are vector valued.

All algorithms we discussed in this chapter so far can be extended to this setting. For example

Algorithm 1 (Forward Euler) simply becomes:

Algorithm 1a: Forward Euler for vector-valued problems

Given an initial value problem , with and nodes

, iteratively compute the sequence

which is identical to Algorithm 1, just with all quantities replaced by their vector-valued analogues.

In fact even the implementations of forward_euler can just be used without changing a single line

of code as we will demonstrate now.

First we setup the HO model function and parameters:

k 2 =

10.0

Then running the dynamics just takes a call to forward_euler as before:

k = 2 # Force constant1

begin

To setup f we assume u is a vector of size 2 and return a vector of size 2

ho_f(u, t) = [u[2];

 -k * u[1]]

As the initial value again we supply a vector of size 2

ho_u₀ = [0.0;

 1.0]

and we are interested in the behaviour from 0 to tend (defined below)

ho_tstart = 0.0

ho_tend = 10.0

end

1

2

3

4

5

6

7

8

9

10

11

12

13

ho_euler = forward_euler(ho_f, ho_u₀, ho_tstart, ho_tend, 50);1

In fact the midpoint and rk4 implementations we provide are similarly generic with respect to

being used with scalar-valued or vector-valued . Applying them all we obtain:

Nho = 50

let

x = [u[1] for u in ho_euler.u] # Extract the particle position

plot(ho_euler.t, x, mark=:o, c=2, lw=2, xlabel=L"t", ylabel=L"x(t)", label="",

title=L"\frac{d^2 x}{d t^2} = -k x", titlefontsize=12, markersize=3, ls=:dash)

end

1

2

3

4

Appendix

fixed_point_newton (generic function with 1 method)

function fixed_point_newton(g, dg, xstart; maxiter=40, tol=1e-6)

f(x) = g(x) - x

df(x) = dg(x) - 1

(; root, n_iter, history_x, history_r) = newton(f, df, xstart; maxiter, tol)

(; fixed_point=root, n_iter, history_x, history_r)

end

1

2

3

4

5

6

newton (generic function with 1 method)

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

function newton(f, df, xstart; maxiter=40, tol=1e-6)

f: Function of which we seek the roots

df: Function, which evaluates its derivatives

xstart: Start of the iterations

maxiter: Maximal number of iterations

tol: Convergence tolerance

history_x = [float(xstart)]

history_r = empty(history_x)

r = Inf # Dummy to enter the while loop

k = 0

Keep running the loop when the residual norm is beyond the tolerance

and we have not yet reached maxiter

while norm(r) ≥ tol && k < maxiter

k = k + 1

Pick most recent entry from history_x (i.e. current iterate)

x = last(history_x)

Evaluate function, gradient and residual

r = - f(x) / df(x)

push!(history_r, r) # Push residual and

push!(history_x, x + r) # next iterate to history

end

(; root=last(history_x), n_iter=k, history_x, history_r)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html

12. Boundary value problems

https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

