
Click here to view the PDF version.

Numerical differentiation

First order derivatives

Numerical stability

Construction of finite difference formulas

Determination of finite differences coefficients

Using interpolating polynomials

Computing higher-order derivatives

Side-stepping the finite precision problem: Going complex

begin

using Plots

using PlutoUI

using PlutoTeachingTools

using Printf

using LaTeXStrings

using HypertextLiteral

using Symbolics

using ForwardDiff

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

9

10

Table of Contents

https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.pdf


Numerical differentiation
Taking derivatives by hand can be a error-prone and time-consuming task. Recall the innocent-

looking function

v (generic function with 1 method)

we already considered in the Introduction. Recall that it's derivative was a rather lengthy and

technical expression, which one would like to avoid computing by hand:

In this chapter we will consider numerical techniques for computing such derivatives.

v(t) = 64t * (1 − t) * (1 − 2t)^2 * (1 − 8t + 8t^2)^21

https://teaching.matmat.org/numerical-analysis/01_Introduction.html


First order derivatives

Given a regular function  our goal is to approximate numerically its derivative  in

a point . We will allow ourselves only to perform  pointwise evaluations  with

 and  and take linear combinations of these results. That is we work

towards approximations of the form

where  are points around  and  some coefficients, with details how to choose these points

and coefficients to be specified.

A first idea to achieve such a numerical differentiation formula takes us back to the definition of

the derivative  as the limit  of the slope of secants over an intervall , i.e.

A natural idea is to not fully take the limit, i.e. to take a small  and approximate

This immediately leads to the forward finite difference formula

Note that in this expression we interpret  in the same way as , i.e. as an operation

applied to the function  at the point .

Without any surprise this can indeed be employed to approximate derivatives. We will consider the

function , or in code

f (generic function with 1 method)

which has a slightly more tractable analytical derivative compared to , so makes it easier for us

to compare results.

We note , i.e.  or

f(x) = sin(exp(x + 1))1



exact_value -2.478349732955235 = 

Simply evaluating (1) with  and  yields

(-2.47863, 0.000275671)

which is already a pretty good approximation to . For a smaller  the result is even

better

(-2.47835, 2.75667e-6)

Continuing this further we observe linear convergence.

exact_value = ℯ * cos(ℯ)1

let

x = 0

h = 1e-4

D⁺ₕ = 1/h * (f(x + h) - f(x))

error = abs(exact_value - D⁺ₕ)

(D⁺ₕ, error)

end

1

2

3

4

5

6

7

8

let

x = 0

h = 1e-6

D⁺ₕ = 1/h * (f(x + h) - f(x))

error = abs(exact_value - D⁺ₕ)

(D⁺ₕ, error)

end

1

2

3

4

5

6

7

8



Let us investigate the convergence behaviour more closely. We consider a Talyor series of  around

:

Considering (1) we thus obtain

or

We just proved the linear convergence of :

Theorem 1: Convergence of  forward finite differences

Given  a twice differentiable function, then the forward finite difference formula

(1) converges linearly



with constant .

In building such finite difference formulas we are not restricted to two nodes and evaluations of .

In general one can imagine to approximate the derivative of  at  by taking  points to the right of

, i.e.  and  points to its left, :

A general definition is:

Definition: Finite differences formula

A finite differences formula for the  equally equispaced nodes ,

 around  is an expression of the form

where the coefficients  do not depend on .

Such a formula is called consistent if for a regular function  it approximates its

first derivative for , i.e.

The forward differences formula (1) only employed the two nodes  and , i.e.  and

. Two other formulas with only two nodes are frequently employed, namely:

Backward finite differences: Instead of constructing the line through  and , one can

also construct the line through  and , which leads to

i.e. a two-point formula with  and .

Central finite differences:



One can think of this formula as the symmetrised form of the forward and backward formulas

(1) and (3), obtained by adding half of (1) to half of (3).

Visualisation of the derivatives obtained by these methods as slopes:

Exact derivative: 

Forward finite differences: 

Backward finite differences: 

Central finite differences: 

Let us consider the convergence of these three variants for computing the derivative of

 at . First we construct the range of  values:

Then we compute the finite-difference approximations of  at :

hs = [10^e for e in 0:-0.5:-7];  # Range of h parameter1



Next we compute the errors agains. the reference  and plot the convergence in a log-log

plot:

begin

x = 0

deriv_forward  = [1/h    * (f(x+h) - f(x))   for h in hs]

deriv_backward = [1/h    * (f(x)   - f(x-h)) for h in hs]

deriv_center   = [1/(2h) * (f(x+h) - f(x-h)) for h in hs]

end;

1

2

3

4

5

6



We observe that both forward and backward finite differences converge at about the same rate.

Indeed, one easily proves that the backward finite differences formula is also of first order.

However, the center finite differences formula converges much faster. We again analyse using

Taylor's formula:

let

p = plot(; yaxis=:log, xaxis=:log, xflip=true, ylims=(1e-9, 10),

   title="Convergence of finite-difference formulas", xlabel=L"h",

   ylabel="absolute error")

error_forward  = abs.(deriv_forward  .- exact_value)
error_backward = abs.(deriv_backward .- exact_value)

error_center   = abs.(deriv_center   .- exact_value)

plot!(p, hs, error_forward;  label="forward",  lw=2, mark=:x)

plot!(p, hs, error_backward; label="backward", lw=2, mark=:x)

plot!(p, hs, error_center;   label="center",   lw=2, mark=:x)

# Lines for perfect 1st and 2nd order convergence.

plot!(p, hs, hs;       ls=:dash, label=L"O(h)",   lw=2)

plot!(p, hs, 0.5hs.^2; ls=:dash, label=L"O(h^2)", lw=2)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17



where  and .

Therefore central finite differences is of second order:

Theorem 2: Convergence of  central finite differences

Given  a three times differentiable function, then the central finite difference

formula (3) converges quadratically

with constant .

In light of this discussion let us formalise the definition of convergence order for the context of

finite differences formulas:

Definition: Convergence order of  finite differences

A finite differences formula  of the form (2) with equally spaced nodes of separation  is of

order  if a constant  indepentent of  (but possibly dependent on ) exists, such that

as long as the function  is sufficiently regular.



Numerical stability

One of the key principles behind all finite difference formulas we considered was that they

approximate the derivative, in the sense that . As a result we would

expect results to become more and more accurate as  gets smaller.

We stick to our example function

where we consider the function on the interval . In particular we evaluate the

derivative at , such that .

Using the forward finite differences formula we compute

  h=1.0e-01   D⁺ₕ=-2.737868275809   error=2.595185e-01h=1.0e-01   D⁺ₕ=-2.737868275809   error=2.595185e-01

h=1.0e-02   D⁺ₕ=-2.505801204880   error=2.745147e-02h=1.0e-02   D⁺ₕ=-2.505801204880   error=2.745147e-02

h=1.0e-03   D⁺ₕ=-2.481105424884   error=2.755692e-03h=1.0e-03   D⁺ₕ=-2.481105424884   error=2.755692e-03

h=1.0e-04   D⁺ₕ=-2.478625403525   error=2.756706e-04h=1.0e-04   D⁺ₕ=-2.478625403525   error=2.756706e-04

h=1.0e-05   D⁺ₕ=-2.478377301063   error=2.756811e-05h=1.0e-05   D⁺ₕ=-2.478377301063   error=2.756811e-05

h=1.0e-06   D⁺ₕ=-2.478352489621   error=2.756666e-06h=1.0e-06   D⁺ₕ=-2.478352489621   error=2.756666e-06

h=1.0e-07   D⁺ₕ=-2.478350012436   error=2.794807e-07h=1.0e-07   D⁺ₕ=-2.478350012436   error=2.794807e-07

h=1.0e-08   D⁺ₕ=-2.478349742097   error=9.141362e-09h=1.0e-08   D⁺ₕ=-2.478349742097   error=9.141362e-09

h=1.0e-09   D⁺ₕ=-2.478349969692   error=2.367371e-07h=1.0e-09   D⁺ₕ=-2.478349969692   error=2.367371e-07

h=1.0e-10   D⁺ₕ=-2.478351412982   error=1.680027e-06h=1.0e-10   D⁺ₕ=-2.478351412982   error=1.680027e-06

h=1.0e-11   D⁺ₕ=-2.478378613446   error=2.888049e-05h=1.0e-11   D⁺ₕ=-2.478378613446   error=2.888049e-05

h=1.0e-12   D⁺ₕ=-2.478739435929   error=3.897030e-04h=1.0e-12   D⁺ₕ=-2.478739435929   error=3.897030e-04

h=1.0e-13   D⁺ₕ=-2.478017790963   error=3.319420e-04h=1.0e-13   D⁺ₕ=-2.478017790963   error=3.319420e-04

h=1.0e-14   D⁺ₕ=-2.470246229791   error=8.103503e-03h=1.0e-14   D⁺ₕ=-2.470246229791   error=8.103503e-03

Plotting this error graphically yields:

begin

X = 0.0

derivative_at_X = ℯ * cos(ℯ)

all_h = [10^i for i in -1:-1.0:-14]

all_error = Float64[]  # Error of D⁺ₕ

for h in all_h

D⁺ₕ = 1/h * (f(X + h) - f(X))

error = abs(D⁺ₕ - derivative_at_X)

@printf "h=%.1e   D⁺ₕ=%.12f   error=%.6e\n" h D⁺ₕ error

push!(all_error, error)

end

end

1

2

3

4

5

6

7

8

9

10

11

12

13



We notice that the derivative formula gives a good approximation to the exact derivative

 for . However, if the node distance  is further descreased the

approximation deteriorates. This is a result of the round-off error in the finite-precision floating-

point arithmetic of the computer as we will discuss now in more detail.

We take another look at the forward finite difference formula

As  gets smaller computing the difference  becomes problematic. Both the

values of  and  can only be computed to finite precision in the computer's

arithmetic. As these values become more and more similar (after all we take  smaller and

smaller) and this makes the difference  less and less precise. For example let us

assume  digits are accurate for both  and  and that we have chosen  so small,

that the first  digits of both  and  agree. Than taking the difference

 will effectively nullify these first  digits, leaving us with only  correct digits in

the final answer. We conclude: As  gets smaller, the difference  has less and

less correct digits, in turn making the numerical derivative  less and less accurate.



This rationalises our observations in the above plot, but it does not yet tell us how we should

choose the best . To answer this question we consider a more quantitative mathematical

analysis. When evaluate the function  using a numerical procedure we always suffer from a

small round-off error. Instead of evaluating  the computer thus actually evaluates

where the round-off error  is on the order of . Note, that  is the relative error of 

In general  will depend on , i.e. evaluating at a different point  will lead to a slightly

different error . However, standard floating-point furthermore come with the guarantee that

For double-precision floating-point numbers  has the value

2.220446049250313e-16

Optional: Effect of additional error contributions when evaluating f

Employing this error model (5) within the evaluation of the first-order finite-difference formula (1)

the computer will thus actually compute

where ,  and . Collecting everything we obtain the error of the

computed finite-difference approximation to  as

eps(Float64)1



We notice there are two error terms in (6). One is proportional to  (finite differences truncation

error) and one is proportional to  (due to round-off error). As  the first term thus

derceases as the finite-difference approximation gets better. However, if  is taken too small the

second error growing as  will dominate and our approximation will be bad.

To obtain which  gives the best sweet spot we want to balance both errors. Utilising equation (6)

the total error of the approximation is bounded by

This function has a single minimum, which we can compute by

The optimal node distance , which minimises the error, is thus

In our example we have  and  and therefore  is of

order , which we also observed numerically.



Optimal  for higher-order formulas: Note that in (6) the  dependence of the first error term

(finite difference truncation error) depends on the order of the finite difference formula.

For an order  method the error will thus have the form

with appropriate constants  and . By a similar argument to minimise this error wrt.  one can

show that the optimal value of  is on the order of  . We summarise:

Observation: Optimal nodal spacing h for finite differences

When computing a numerical derivative of  using a finite-difference method of order  the

optimal spacing of nodes satisfies roughly

where  is the maximal relative error in the evaluation of .

To illustrate this graphically we apply three finite-difference (FD) formulas



1st order:  (forward finite differences)

2nd order:  (central finite differences)

4th order: 

to the selected function to compute the derivative at at .

g =  h(x) = exp(-1.3 x)

We compute a reference using ForwardDiff , a more precise algorithmic technique to compute

derivatives (outside of the scope of this course):

x₀ 0.2 = 

reference -1.002367061544636 = 

... and apply the three formulas:

x₀ = 0.21

reference = ForwardDiff.derivative(g, x₀)1



As  shrinks the errors are initially dominated by the truncation error, which dicreases most

rapidly for the 4th order formula. However, the increasing round-off error eventually dominates

the behaviour as the truncation error continues to decrease.

As the order increases the crossover point between truncation error and round-off error moves

further to the left and further down. Thus higher-order methods are generally more accurate as

the numerically problematic small  values can be avoided.

The optimal value for  does indeed scale with  . However, as a visual inspection of the error

plot shows, this formula does only provide a rough orientation: Sometimes the  with lowest error

can in fact be smaller or larger. In practice finding the best  can still be rather challenging.

Construction of  finite difference formulas

As we saw above, the delicate balance between truncation error and round-off error implies that –-

even when choosing the best  –- the accuracy of low-order finite-difference formulas can remain

limited. In particular for accuracies beyond  second and higher-order formulas are almost

always needed and in fact a wide range of such formulas are available in the literature.



We will not discuss all details in this lecture and only sketch two ideas how other finite difference

formulas can be obtained in practice. For further discussion and a table of common finite

difference formulas see for example chapter 5.4 Driscoll, Brown: Fundamentals of Numerical

Computation.

Determination of  finite differences coefficients
The definition (2) of a finite difference formula already introduced the general expression

with nodes

The integers  and  determine the limits of the sum and thus the number of nodes at which one

needs to evaluate the function.

Since function evaluation is usually the expensive step, and such a formula needs around

 function evaluations, the values of  and  should remain small. Thus the values for

 and  often need to be set due to practical limitations, such as the available computational time

or the structure of the computational problem.

Assuming that  and  are given the main unknown are thus the coefficients . Using a Taylor

expansions of  these can be obtained such that  matches  as close as possible. We

consider an example:

Example: m=n=1

We consider the case , i.e. we want to derive the finite-differences formula using

the three nodal points ,  and . For this setting the general formula (2) becomes

Expanding  and  using Taylor series we have

https://tobydriscoll.net/fnc-julia/localapprox/finitediffs.html#arbitrary-nodes


Collecting coefficients we obtain

which we want to be as close as possible to . On the coefficients this imposes the

conditions

The solution to this system can be easily computed as

[-0.5, 0.0, 0.5]

i.e. , , , which we insert into (8) to obtain

We thus recover the central finite differences formula (4) from earlier.

let

A = [ 1 1 1;

         -1 0 1;

          1 0 1]

b = [0;

 1;

 0]

w = A \ b

end

1

2

3

4

5

6

7

8

9



Using interpolating polynomials
Recall our visualisation of the various finite differences formulas:

In this image the value of the finite-difference derivative was the slope of the plotted lines. Most

notably these lines are interpolating lines between two of the points ,

 or .

For example the forward finite differences formula (1)

can be interpreted as the slope of a line going through  and . To put in

another way we can interpret this formula as the result of a two-step procedure:

1. Interpolate a polynomial through  and , leading to the linear

polynomial interpolation .

2. Take the derivative of this interpolation  at .

Indeed, using Lagrange polynomials we easily construct the interpolating polynomial  as



which has derivative

as required.

This leads to a natural generalisation to obtain finite-difference formulas: Interpolate a polynomial

through  nodes  for , leading to the -th

degree polynomial . Then take its derivative to obtain the finite differences formula as

Example n=m=1

We apply the procedure again to the case  with the three nodal points , 

and . Using a Lagrange basis we find the second-degree interpolating polynomial 

through the points ,  and  as

Its derivative is



such that at  we get the finite-difference formula

which coincides again with the central finite difference formula (4).

Computing higher-order derivatives

The methods sketched in the aforementioned section also allow us to build finite-difference

formulas to build higher-order derivatives.

For example, based on the interpolated polynomial (9) on the nodal points ,  and , we

obtain a formula for approximating the second derivatives as

This formula is also of second order as can be checked using a Taylor series:

Exercise

Prove that  approximates the second derivative of  to second order.

Potential confusion: n-th derivative versus order n

Do not confuse the derivation order (how many times we differentiate) and the approximation

order (the leading power of  in the approximation error).

In this case, we are approximating a second derivative, so the derivation order is 2, and it turns

out that this formula has an approximation error in  so the approximation order is also 2.



Side-stepping the finite precision problem:

Going complex

TODO("Include this fantastic remark by Nick Highham:

https://www.siam.org/publications/siam-news/articles/differentiation-without-a-difference ")

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

md"""

## Side-stepping the finite precision problem: Going complex

TODO("Include this fantastic remark by Nick Highham:

https://www.siam.org/publications/siam-news/articles/differentiation-without-a-

difference

")

"""

1

2

3

4

5

6

7

8

9

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

