
Click here to view the PDF version.

Numerical integration

Trapezoidal rule

Simpson's rule

⚠ TODO ⚠

Error analysis

Extrapolation techniques

⚠ TODO ⚠

⚠ TODO ⚠

Node doubling

⚠ TODO ⚠

Optional: A posteriori error estimation

begin

using Plots

using PlutoUI

using PlutoTeachingTools

using LaTeXStrings

using QuadGK

using Printf

using HypertextLiteral

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

9

Table of Contents

https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.pdf

Numerical integration
Integration is an important operation in engineering and the physical sciences, but evaluating

integrals analytically can be quite challenging. For such cases employing numerical integration

techniques is a good alternative, which sometimes turns out to be no less accurate.

Let's start with an easy analytic case. The integral can be computed rather elegantly by

analytical means, since the anti-derivative of is again . Therefore

exact 1.718281828459045 =

To perform the integration numerically, we can employ the Julia package QuadGK , which

implements an all-purpose numerical integration routine:

1.7182818284590453

As we observe, the difference to the analytical result is tiny and on the order of the floating-point

precision.

However, the numerical approach is much more flexible. For example has no useful anti-

derivative. Still the numerical approach works just as well to compute :

1.6318696084180515

What is remarkable when looking at the graphs of these two functions is that they are very similar

... and for one case the area under the curve boils down to simple basic calculus and the other is

impenetrable analytically. However, from a numerical standpoint they are basically the same

problem.

exact = exp(1) - 11

let

Q, error_estimate = quadgk(x -> exp(x), 0, 1)

Q

end

1

2

3

4

let

Q, error_estimate = quadgk(x -> exp(sin(x)), 0, 1)

Q

end

1

2

3

4

Trapezoidal rule

The task of numerical integration is to approximate an integral . We want to achieve

this by sampling the function at carefully selected points , , followed by taking

linear combinations of the results. We thus work towards approximations of the form

In general the can be distributed arbitrarily in the interval . However, for simplicity we will

assume equally spaced nodes using the definition

begin

p = plot(exp, 0, 1, fill=0, fillalpha=0.3, xlabel=L"x", ylabel=L"e^x", ylims=

(0, 2.7), label="")

q = plot(x -> exp(sin(x)), 0, 1, fill=0, fillalpha=0.3, xlabel=L"x",

ylabel=L"e^{\sin(x)}", ylims=(0, 2.7), label="")

plot(p, q, layout=(2, 1))

end

1

2

3

4

5

6

A first idea goes back to polynomial interpolation: As polynomials are easy to integrate

analytically, we could just fit a -th degree polynomial through our nodes

and then integrate that instead of itself.

Since the integration of the polynomial is essentially exact, the error of such a scheme is dominated

by the error of the polynomial interpolation. Recall the chapter on Interpolation, where we noted

polynomials through equispaced nodes to become numerically unstable and possibly inaccurate for

large due to Runge's phaenomenon.

Therefore we will pursue piecewise linear polynomial interpolation instead of fitting an -th

degree polynomial.

The following graphics illustrates the idea:

To approximate integral , that is the area under the blue curve, we evaluate the

function at equispaced nodes leading to data points . From these we construct a

piecewise linear polynomial interpolation (black line). Integrating on then yields

an approximation to :

https://teaching.matmat.org/numerical-analysis/05_Interpolation.html

As a reminder the are the hat functions defined as

Recall that , that is to say the distance between two nodes is always . With this and

using the formulas for computing the areas of triangles the integrals of the hat functions can be

evaluated as

leading to the final formula

This formula is called the trapezoidal rule. This name stems from a more geometric way of

constructing the trapezoidal formula: as can be captured in the visualisation above, one can think of

the formula as summing the areas of the trapezoids defined by the quadrature nodes (see shaded

grey).

An implementation of the trapezoidal rule is:

trapezoid (generic function with 1 method)

function trapezoid(f, a, b, n)

f: Function

[a, b]: Interval to integrate over

n: Number of pieces to break the interval into

h = (b - a) / n
t = range(a, b, length=n+1)

y = [f(tₙ) for tₙ in t]

integral = h * (0.5y[1] + sum(y[2:n]) + 0.5y[n+1])

(; integral, h)

end

1

2

3

4

5

6

7

8

9

10

Recall that in Theorem 4 of chapter 05 (Interpolation) we found that the piecewise polynomial

interpolation shows quadratic convergence

where . With this in mind we can bound the error of the trapezoidal rule as

We thus expect quadratic convergence with .

Let us confirm this numerically on the simple integral from earlier, i.e.

f (generic function with 1 method)

and

which is approximately 1.7182818.

We consider a sequence of results where we double the number of integration points:

ns [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] =

The corresponding approximate integrals using the trapezoidal formula and quadrature

node distances are:

f(x) = exp(x)1

ns = [2^i for i in 1:11]1

https://teaching.matmat.org/numerical-analysis/05_Interpolation.html

 n = 2 T(f) = 1.7539310925 error = 0.0356492640n = 2 T(f) = 1.7539310925 error = 0.0356492640
n = 4 T(f) = 1.7272219046 error = 0.0089400761n = 4 T(f) = 1.7272219046 error = 0.0089400761
n = 8 T(f) = 1.7205185922 error = 0.0022367637n = 8 T(f) = 1.7205185922 error = 0.0022367637
n = 16 T(f) = 1.7188411286 error = 0.0005593001n = 16 T(f) = 1.7188411286 error = 0.0005593001
n = 32 T(f) = 1.7184216603 error = 0.0001398319n = 32 T(f) = 1.7184216603 error = 0.0001398319
n = 64 T(f) = 1.7183167869 error = 0.0000349584n = 64 T(f) = 1.7183167869 error = 0.0000349584
n = 128 T(f) = 1.7182905681 error = 0.0000087396n = 128 T(f) = 1.7182905681 error = 0.0000087396
n = 256 T(f) = 1.7182840134 error = 0.0000021849n = 256 T(f) = 1.7182840134 error = 0.0000021849
n = 512 T(f) = 1.7182823747 error = 0.0000005462n = 512 T(f) = 1.7182823747 error = 0.0000005462
n =1024 T(f) = 1.7182819650 error = 0.0000001366n =1024 T(f) = 1.7182819650 error = 0.0000001366
n =2048 T(f) = 1.7182818626 error = 0.0000000341n =2048 T(f) = 1.7182818626 error = 0.0000000341

We notice that the error decreases roughly by a factor when we double the number of quadrature

nodes (i.e. half the distance between the quadrature nodes). This again confirms the idea of a

second-order convergence.

This becomes even clearer if we plot the error versus in a log-log plot along with a line of slope :

begin

Tfs = Float64[]

hs = Float64[]

errors = Float64[]

for n in ns

res = trapezoid(f, 0, 1, n)
Tf = res.integral # Trapezoidal approximation

h = res.h # Quadrature node distances

error = abs(Tf - exact)

@printf "n =%4d T(f) = %.10f error = %.10f\n" n Tf error

push!(Tfs, Tf)

push!(hs, h)

push!(errors, error)

end

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The trapezoidal rule is just one representative of the wide class of numerical integration formulas. A

general definition is:

Definition: Numerical integration formula

A numerical integration formula for the equispaced quadrature nodes ,

 is the set of weights , such that for an integrand

The weights are independent of .

An older and still frequently used name for numerical integration is quadrature.

By comparing with our derivation above, we realise:

Definition: Trapezoid formula

The trapezoid formula is the numerical integration of the form (2) with nodes (i.e.

) and weights

Simpson's rule

⚠ TODO ⚠

Show an illustrative drawing as well

Considering the construction of the trapezoidal rule we may easily wonder: why stop at using only

linear polynomials to proximate within each interval ?

Indeed, Simpson's formula takes the idea one step further and constructs a quadratic polynomial

within each interval by evaluate on , as well as the midpoint . This

overall leads to a piecewise quadratic interpolant of the integrand on , which we again

integrate exactly. This is a little harder to compute and will be done as an exercise. The resulting

formula is Simpson's formula

While a little harder to see, this formula can also be brought into the form of (2): it employs

equispaced nodes –- namely the collection of both the for and the for

. Therefore in (2) leading to a nodal distance of , where we

used that

Exercise

Derive Simpson's rule, i.e. show that

TODO("Show an illustrative drawing as well")1

A Julia implementation of Simpson's rule is given below:

simpson (generic function with 1 method)

Comparing the error of the trapezoidal and Simpson's quadratures against the exact integral of

 we obtain a much faster convergence for Simpson's rule, numerically looking like an

convergence.

function simpson(f, a, b, n)

f: Function

[a, b]: Interval to integrate over

n: Number of pieces to break the interval into

h = (b - a) / n

t = range(a, b, length=n+1) # Subinterval boundaries
m = range(a+h/2, b-h/2, length=n) # Subinterval midpoints

Evaluate f and compute approximation

ft = f.(t)

fm = f.(m)

integral = h * (ft[1]/6 + sum(ft[2:n])/3 + 2sum(fm)/3 + ft[n+1]/6)

(; integral, h=h/2) # Note h/2 since the actual nodal distance is half of h

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

p_convergence =

In line with the definition of algebraic convergence (and convergence order) for other

approximation techniques we define the accuracy of a quadrature formula as:

p_convergence = let

Trapezoidal rule

Tfs = [trapezoid(f, 0, 1, n).integral for n in 1:3:800]

hs_trap = [trapezoid(f, 0, 1, n).h for n in 1:3:800]

p = plot(hs_trap, abs.(Tfs .- exact);

 yaxis=:log, xflip=true, xaxis=:log,

 xlabel=L"h", ylabel="error", label="Trapezoidal", lw=2)

Simpson's rule

Sfs = [simpson(f, 0, 1, n).integral for n in 1:2:400]

hs_simps = [simpson(f, 0, 1, n).h for n in 1:2:400]

plot!(p, hs_simps, abs.(Sfs .- exact), label="Simpson", lw=2)

Guiding lines

plot!(p, hs_trap, hs_trap.^2, ls=:dash, c=1, label=L"$O(h^2)$; slope 2")

plot!(p, hs_trap, hs_trap.^4/1000, ls=:dash, c=2, label=L"$O(h^4)$; slope 4")

xticks!(p, 10.0 .^ (0:-0.5:-3))

yticks!(p, 10.0 .^ (0:-2:-14))

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Definition: Convergence order of numerical integration

A numerical integration formula of the form (2) with equally spaced quadrature notes of

separation is of order if a constant indepentent of (but possibly dependent on)

exists, such that

as long as the function is sufficiently regular.

We notice that our numerical investigation suggests:

Convergence order of common numerical integration techniques

Trapezoidal rule: Convergence order

Simpon's rule: Convergence order

Error analysis

In this lecture we only consider so-called composite quadrature formulas, i.e. formulas which

satisfy

where is the quadrature formula applied to the subinterval , i.e. the application of

the quadrature formula to with no no subdivision of the integration interval. As a

consequence we can decompose the error

into error contributions from each of the intervals .

Assume for simplicity that the function is smooth and we can thus build a Taylor expansion

around the midpoint of the interval . Based on this we can deduce a series

for the exact integral:

where we defined .

If we apply a quadrature formula (2) to we can follow through with similar steps. Here note that

for the number of nodes is exactly two –- the beginning of the interval and the end, such that

 and the term . We obtain:

The difference between these expressions is exactly the error contribution from the interval

, namely

The error of the integration formula can thus be completely understood by studying the error

. Since is just a polynomial of degree we can thus understand the

accuracy of quadrature formulas for arbitrary functions by studying the accuracy of quadrature

formulas for polynomials, which is considerably simpler.

One property of quadrature formulas is their degree of exactness:

Definition: Degree of exactness

A numerical integration formula as given in (2) has a degree of

exactness if it integrates all monomials with (integer) exactly, i.e. if

but not for .

Note that the polynomial

only features monomials with . Therefore a formula with degree of exactness will

have for . In (5) the first non-zero error term is thus

where in all powers in less than drop again because of 's degree of exactness and in

 we skipped a few non-trivial steps, which are optional and will be presented below. This is also

the leading-order error term, such that

§

§

The error in each of the the subintervals thus converges with -th order, such that

combining with (4) and using the triangle inequality we obtain the total error as

where .

We notice:

Theorem 1 (Convergence order, simple version)

A numerical integration formula as given in (2) with degree of

exactness is of order as long as the function is at least times differentiable.

Optional: More details on Theorem 1

In short by determining the degree of exactness of a quadrature formula we thus automatically

obtain its convergence order.

In fact in agreement with our expected convergence orders (2 and 4) one can show that:

Degree of exactness of common numerical integration techniques

Trapezoidal rule: Degree of exactness

Simpson's rule: Degree of exactness

We will show this now explicitly for the case of Simpson's rule.

Example: Simpson's formula has degree of exactness r=3.

We will confirm that Simpson's formula has degree of exactness .

Recall that the idea of Simpson's formula was to split the integral into equally sized

subintervals as

and then on such a subinterval approximate

If the approximation in (7) is an equality on all subintervals for the monomials with degree ,

then Simpson's formula is an equality for these monomials on the full interval as well.

Inserting into (7) we notice that our task is to show

but that this does not hold for .

An additional trick we can employ to simplify our calculations is to assume that the integration

interval is with a length of , , , . While

perhaps suprising this does not actually change the generality of our result [1]. Inserting the

values for , , and into the above expression we need to show that

but that this equality fails for .

We have

but in contrast

Therefore Simpson's formula has degree of exactness .

[1]:

The reason is that by an appropriate change of variables we can always rescale the integration

coordinate, such that integration does run over . Note that this in principle does

generate some extra terms on top of , but these are always of a lower power in than

itself. So if we proceed as shown here, namely to consider integrating monomials with

increasing powers of , then all terms generated by this change of variables are already

known to be integrated exactly at this stage.

Extrapolation techniques

In numerical integration the computationally expensive step is usually the evaluation of the

function at the points of the quadrature nodes. Generally higher-order numerical integration

formulas are able to achieve higher accuracy with the same or less function evaluations. We will

discuss one systematic technique to obtain higher-order quadrature formulas called extrapolation.

⚠ TODO ⚠

Make the general treatment optional and focus mostly directly applying this to the

Trapezoidal rule.

TODO("Make the general treatment optional and focus mostly directly applying this

to the Trapezoidal rule.")

1

⚠ TODO ⚠

What is confusing here is that before we did expansions (I - T_n(f) = stuff, but now we do I =

T_n(f) + stuff.)

Suppose a quantity is approximated by an algorithm with error expansion

Crucially it is not necessary to know the coefficients , the only requirement is for them to be

indepentent of . If we now look at the better approximation with half the node spacing then

Forming a linear combination between both methods we obtain

which defines a new approximation algorithm . Note that while is a first-

order algorithm, is a second-order algorithm.

This idea to cancel the leading-order error term by taking a linear combination of two formulas of

simple and half node spacing is termed Richardson extrapolation. Importantly in contrast to

simply reducing the node spacing this scheme is able to increase the convergence order.

Let us apply this to the trapezoidal formula for approximating the integral . We

use quadrature nodes of equal separation . As we have discussed above the

trapezoidal formula is of order , so the leading-order error term is . However, in this fortunate

case one can even show (using the Euler–Maclaurin formula) that the odd powers of are missing,

i.e.

TODO("What is confusing here is that before we did expansions (I - T_n(f) = stuff,

but now we do I = T_n(f) + stuff.)")

1

https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

where

While it could happen that we will make the general assumption that .

For convenience of notation we rewrite (10) in terms of the number of subintervals. Using

 we obtain

The Trapezoidal rule with twice the number of subintervals (half the spacing) similarly reads

Using an appropriate linear combination we can again cancel out the second-order term.

Specifically, define

and consider :

The quadrature formula is thus a 4-th order method. While not immediately clear (14) turns

out to be identical to Simpson's formula (3), see the details at the end of this section. In other words

we can view Simpson's formula as the numerical integration formula obtained either

by integrating a piecewise quadratic approximation of the integrand or

by applying Richardson extrapolation to the trapezoidal rule.

We formulate a general procedure for Richardson extrapolation in the context of numerical

integration:

Observation: General procedure for Richardson extrapolation

Given an error expansion of a quadrature with subintervals

where is integer and . Then a a quadrature of at least order can be found by the

linear combination

This can be verified as follows: using twice the number of nodes in (15) we obtain

Then considering the linear combination between the equations of single

and double the number of subintervals we obtain

i.e. that is of order at least .

Note that Simpson's formula (13) turns out to be another error expansion of the form (8), so we can

apply Richardson extrapolate another time, this time using Simpson's rule with and

quadrature subintervals. From (16) we note the appropriate linear combination to be

which is a 6-th order numerical integration formula.

This process can of course be repeated using , , subintervals, leading to higher and

higher quadrature orders. One usually calls this Romberg integration, which we will not present in

full generality here.

Optional: Details on the equality of the two forms of Simpson's formula

Node doubling
If we consider the integration formula we notice that depends on and , which in

turn depend on , and . Continuing along the Romberg integration procedure we would

recursively perform more and more levels of extrapolation. At the next level we also require ,

then and so on, such that in each step the number of nodes to consider roughly doubles.

This node doubling is particularly advantageous in practice and much preferred over other

schemes. The reason is illustrated in the figure below, which divides the node spacing by half from

one level to the next. In each layer new nodes are only introduces at the midpoints (shown in red).

Notably, about half of the total number of nodes in each layer is red. Therefore moving from to

 (respectively from to nodes) only about half of the nodes are new and need to

be evaluated. On the others the function values are already known (as they were needed at the

prevous level) and can be re-used without extra cost.

⚠ TODO ⚠

Using the drawing above this can be better explained, in particular T_{2n} easily re-written

from T_n if one considers halfing the interval size ... perhaps some extra labels need to be

introduced in the drawing above

To make this explicit we use a formulation for the trapezoidal rule, which is developed in the part

Details on the equality of the two forms of Simpson's formula, equation (19). As it states the trapezoidal

rule with subintervals can be expressed in terms of quantities of the trapezoidal rule with

subintervals, that is in terms of the quadrature nodes (for), the nodal

spacing and the midpoints :

Noting for and using the definition of this can be

reformulated as

Since are just the odd quadrature nodes of the

quadrature formula, we see that only these odd nodes need to be evaluated additionally when

considering instead of .

Let's see this in an example. We want to compute

using extrapolation. First we use quadgk to get an accurate value:

TODO("Using the drawing above this can be better explained, in particular T_{2n}

easily re-written from T_n if one considers halfing the interval size ... perhaps

some extra labels need to be introduced in the drawing above")

1

0.1904741736116139

Based on the trapezoidal rule on subintervals we get a first estimate:

T20 0.19041144993926787 =

Now we double to , but we only need to evaluate the odd nodes:

T40 0.19045880585951175 =

We repeat a second time and double again:

T80 0.1904703513046443 =

Using (13) we can perform a first level of extrapolation and get the two Simpson values and

:

begin

g(x) = x^2 * exp(-2x)

a = 0

b = 2

V, _ = quadgk(g, a, b, atol=1e-14, rtol=1e-14)

end;

1

2

3

4

5

6

V1

T20 = let

n = 20

h = (b - a) / n

t = h * (0:n)

y = g.(t)

T20 = h*y[1]/2 + h*sum(y[2:n]) + h*y[n+1]/2

end

1

2

3

4

5

6

7

T40 = let

n = 40

h = (b - a) / n

t = h * (0:n)
y_odd = g.(t[2:2:n])

T40 = T20/2 + h*sum(y_odd)

end

1

2

3

4

5

6

7

T80 = let

n = 80

h = (b - a) / n

t = h * (0:n)

y_odd = g.(t[2:2:n])

T80 = T40/2 + h*sum(y_odd)

end

1

2

3

4

5

6

7

S40 0.19047459116625973 =

S80 0.19047419978635513 =

Finally, we perform one more level of extrapolation to get the sxth-order accurate result :

R80 0.1904741736943615 =

We compute all errors to 10 digits:

and summarise them in a table along with the number of function evaluations:

number of evals order 2 order 4 order 6

21 6.27237e-5

41 1.53678e-5 -4.176e-7

81 3.8223e-6 -2.62e-8 -1.0e-10

We notice that the 6th order result obtained using Richardson extrapolation is about twice as

accurate as the order 2 result, even though it uses the same number of function evaluations.

Since the cost of function evaluation is usually dominating in numerical integration, the take-away

is that one should never just use low-order quadratures, but always employ extrapolation

techniques.

Optional: A posteriori error estimation

If we want to numerically evaluate an integral using a chosen quadrature formula

, a natural question to ask is how many quadrature nodes are necessary to obtain an

approximation of the the integral within a predefined error tolerance .

In the previous sections we discussed, that Richardson extrapolation provides a receipe to obtain a

higher-order quadrature from the numerical integration values and . As a

S40 = (4T40 - T20) / 31

S80 = (4T80 - T40) / 31

R80 = (16S80 - S40) / 151

begin

eT = round.(V .- [T20 T40 T80]; digits=10)

eS = round.(V .- [S40 S80]; digits=10)

eR = round.(V .- [R80]; digits=10)

end;

1

2

3

4

5

result is in general more accurate than , which motivates to employ the difference

as an estimate of the error committed by the formula . Indeed assuming an error expansion

(15), i.e. , and and a corresponding Richardson extrapolation (16)

one verifies

Therefore a simple adaptive strategy is to start with nodes by computing and and

. Then check whether is satisfied and if this is not the case keep doubling the

number of nodes until it is. Sticking to a single layer of extrapolation for simplicity we obtain the

following algorithm:

Algorithm: Adaptive quadrature based on Richardson extrapolation

Given the problem to compute , quadrature formula an initial number of

subintervals and a requested tolerance , compute:

Initialise ,

Initial estimate of integral

While iterate:

Update

 (using updated node distance)

Extrapolate using (14)

Update

Applied to the trapezoidal formula this is implemented as follows:

trapezoid_adaptive (generic function with 1 method)

We test this works as expected using our example from the node doubling section:

(integral = 0.190474, h = 0.03125, n = 64)

The error is indeed below the requested tolerance:

6.386761788879092e-8

The next step to improve this approach would be to additionally employ Romberg integration, i.e.

to recursive extrapolate not only from & to , but to also employ and

function trapezoid_adaptive(f, a, b; n₀=2, tol=1e-12)

f: Function

[a, b]: Interval to integrate over

n₀: Initial number of subintervals (i.e. n₀+1 quadrature nodes)

tol: Desired tolerance

n = n₀

h = (b - a) / n₀ # Node separation

t = (0:n) .* h # Quadrature nodes

y = f.(t) # Evaluate function on all nodes

Tₙ = h * (0.5y[1] + sum(y[2:n]) + 0.5y[n+1]) # Trapezoidal formula with n₀

nodes

extrapolated = 0.0

ηₙ = 10tol

while ηₙ > tol

h = (b - a) / 2n # New node separation

t = (0:2n) .* h # New set of quadrature nodes
y_odd = f.(t[2:2:2n]) # Evaluate only at odd nodes

Use node doubling formula (20) to evaluate Trapezoidal formula with 2n

nodes.

T₂ₙ = Tₙ/2 + h * sum(y_odd)

Perform extrapolation: Note that p = 2 for the Trapezoidal formula

extrapolated = (4T₂ₙ - Tₙ) / 3

n = 2n

Tₙ = T₂ₙ

ηₙ = abs(extrapolated - T₂ₙ)

end

(; integral=extrapolated, h, n)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

(; integral, h, n) = trapezoid_adaptive(g, 0, 2; tol=1e-5)1

abs(integral - V)1

evaluate the 6-th order formula like we did in the numerical example of the node doubling

section. However, these ideas are out of scope for us.

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

