
Click here to view the PDF version.

⚠ TODO ⚠

Eigenvalue problems

Power iteration

Power iteration algorithm

Convergence of power method

Spectral transformations

⚠ TODO ⚠

Convergence of inverse iterations

Optional: Dynamic shifting

begin

using LinearAlgebra

using PlutoUI

using PlutoTeachingTools

using Plots

using LaTeXStrings

using HypertextLiteral

using Printf

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

9

Table of Contents

https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.pdf

⚠ TODO ⚠

If we do this chapter after boundary value problems, we can actually motivate eigenvalue

problems from solving an equation like in a bounded domain (discretised e.g.

using sine functions). This is nice because (a) it is related to the Resonance phaenomena

equations, that lead to the resonance catastrophe in bridges (if hits an eigenvector of the

laplacian) and (b) it makes the whole eigenvalue problems better embedded into the rest of

the course and as an "application".

TODO(md"""If we do this chapter *after* boundary value problems, we can actually

motivate eigenvalue problems from solving an equation like $-\Delta u = f$ in a
bounded domain (discretised e.g. using sine functions). This is nice because (a) it

is related to the Resonance phaenomena equations, that lead to the resonance

catastrophe in bridges (if f hits an eigenvector of the laplacian) and (b) it

makes the whole eigenvalue problems better embedded into the rest of the course and

as an "application". """)

1

Eigenvalue problems
Recall that the eigenpairs of a matrix are the pairs of eigenvalues and eigenvectors

 such that

Geometrically speaking the eigenvectors provide special directions in space along which forming

the matrix-vector-product is particularly simple, namely it just scales the vector by a

number.

But more generally if is an arbitrary vector and if for simplicity we assume to be symmetric and

positive definite, then we find

where we used the inequalities introduced at the end of Direct methods for linear systems. We

note that the largest eigenvalue of provides a bound to the action of .

This may sound technical, but as matrices are common in physics and engineering and since their

eigenpairs characterise the action of these matrices, the computation of eigenpairs often carries a

physical interpretation.

For example, in the classical mechanics of rotating objects, the eigenvectors of the Moment of

inertia tensor are the principle axes along which an object spins without coupling to other

rotational degrees of freedom.

In engineering the eigenvalues of the Hessian matrix (the Laplacian) of an object's total energy

describe the resonance frequences. That is the frequencies at which the object best absorbs energy

from an outside excitation. When these frequencies coincide with the motion of humans or cars

this can lead to a Resonance disaster, e.g. the famous Tacoma Narrows Bridge Collapse or the

Millenium Bridge Lateral Excitation Problem). Analysing the eigenfrequencies of bridges is

nowadays required as part of the procedure to obtain the permissons for construction.

In this notebook we will discuss some simple iterative methods for actually computing eigenpairs.

However, the topic is vast and we will only scratch the surface. Readers interested in a more in-

depth treatment of eigenvalue problems are encouraged to attend the master class MATH-500:

Error control in scientific modelling. Some recommended further reading can also be found in the

https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Mechanical_resonance#Resonance_disaster
https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)#Collapse
https://en.wikipedia.org/wiki/Millennium_Bridge,_London#Resonance
https://teaching.matmat.org/error-control/
https://teaching.matmat.org/error-control/

book Numerical Methods for Large Eigenvalue Problems by Youssef Saad as well as the Lecture

notes on Large Scale Eigenvalue Problems by Peter Arbenz.

Power iteration

We start with a simple question: What happens if we apply a matrix multiple times ? Here, we

choose the matrix

A 2×2 Matrix{Float64}:
0.5 0.333333
0.5 0.666667

 =

and a random 2-element vector:

[-0.337622, -0.740173]

[-0.337622, -0.740173]

Applying the matrix once seems to be very innocent:

[-0.415535, -0.66226]

But if we appy many times we start to see something ...

A = [0.5 1/3;

 0.5 2/3]

1

2

begin

dummy # For rerun to work
x = randn(2)

end

1

2

3

4

x1

A * x1

https://epubs.siam.org/doi/book/10.1137/1.9781611970739
https://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf
https://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf

 Iteration 1: x = [-0.4155, -0.6623]Iteration 1: x = [-0.4155, -0.6623]
Iteration 2: x = [-0.4285, -0.6493]Iteration 2: x = [-0.4285, -0.6493]
Iteration 3: x = [-0.4307, -0.6471]Iteration 3: x = [-0.4307, -0.6471]
Iteration 4: x = [-0.4310, -0.6467]Iteration 4: x = [-0.4310, -0.6467]
Iteration 5: x = [-0.4311, -0.6467]Iteration 5: x = [-0.4311, -0.6467]
Iteration 6: x = [-0.4311, -0.6467]Iteration 6: x = [-0.4311, -0.6467]
maxerror = 1.6699477598525192e-6maxerror = 1.6699477598525192e-6

Regenerate random vector and rerun experiment

Note how the iterations stabilise, i.e. that and start to be alike. In other words we seem to

achieve , which is nothing else than saying that is an eigenvector of with eigenvalue

.

begin

history = [x]

for j in 1:6

x = A * x

push!(history, x)

@printf "Iteration %i: x = [%12.4f, %12.4f]\n" j x[1] x[2]
end

maxerror = maximum(abs, (x - A * x))

@show maxerror

end;

1

2

3

4

5

6

7

8

9

10

Let us understand what happened in this example in detail. We consider the case

diagonalisable and let further

be its eigenvalues with corresponding eigenvectors , , , which we collect column-wise

in a unitary matrix , i.e.

Note that , such that is non-degenerate and the absolutely largest eigenvalue.

We call it the dominant eigenvalue of . If is a positive integer, then we have

and we can expand any random starting vector in terms of the eigenbasis of , i.e.

where is the vector collecting the coefficients . Notably this implies .

Consider applying a number of times to . This yields

If then

A consequence of the ascending eigenvalue ordering of equation (1) is that

and therefore that each of the terms for goes to zero for .

Therefore overall

In other words eventually becomes a multiple of the eigenvector associated with the

dominant eigenvalue.

Conventions of eigenpair ordering

In the literature as well as across linear algebra codes there are multiple conventions regarding

the ordering of eigenvalues. E.g. whether eigenvalues are ordered from smallest to largest, from

largest to smallest, whether one considers the absolute value of the eigenvalues or the signed

values etc. Wherever this is possible and makes sense we will employ the ordering

i.e. that eigenvalues increase in magnitude, but their signs may differ.

Power iteration algorithm
Let's try applying our idea from the earlier section to the matrix

B 2×2 Matrix{Float64}:
0.1 5.0
0.0 5.0

 =

which has eigenvalues and λₙ = 5.0. The latter is the dominant one, which can further be

changed by this slider:

λₙ = 5.0

We again run 6 subsequent applications of and hope the iterations to stabilise:

B = [0.1 5.0;

 0.0 λₙ]

1

2

 Iteration 1: x = [-0.6882, -0.5524]Iteration 1: x = [-0.6882, -0.5524]
Iteration 2: x = [-2.8306, -2.7618]Iteration 2: x = [-2.8306, -2.7618]
Iteration 3: x = [-14.0921, -13.8090]Iteration 3: x = [-14.0921, -13.8090]
Iteration 4: x = [-70.4544, -69.0452]Iteration 4: x = [-70.4544, -69.0452]
Iteration 5: x = [-352.2713, -345.2259]Iteration 5: x = [-352.2713, -345.2259]
Iteration 6: x = [-1761.3566, -1726.1294]Iteration 6: x = [-1761.3566, -1726.1294]

But this time this does not work ... unless λₙ happens to be 1.0.

This can be understood looking at equation (2): if , then becomes extremely

large, such that , which grows significantly from one iteration to the next,

such that no stabilisation is achieved. Similarly if then as the becomes

smaller and smaller.

Apart from not converging, this also poses difficulties from a numerical point of view, since

accurately representing the vector entries of and performing the associated matrix-

vector products becomes more and more difficult the larger the range of numbers that have

to be represented.

Naively one could take a look at (3) and just normalise in each iteration by dividing by . And

indeed this works:

 Iteration 1: x = [0.2645, 0.2528]Iteration 1: x = [0.2645, 0.2528]
Iteration 2: x = [0.2581, 0.2528]Iteration 2: x = [0.2581, 0.2528]
Iteration 3: x = [0.2579, 0.2528]Iteration 3: x = [0.2579, 0.2528]
Iteration 4: x = [0.2579, 0.2528]Iteration 4: x = [0.2579, 0.2528]
Iteration 5: x = [0.2579, 0.2528]Iteration 5: x = [0.2579, 0.2528]
Iteration 6: x = [0.2579, 0.2528]Iteration 6: x = [0.2579, 0.2528]

let

x = randn(2)

for j in 1:6

x = B * x

@printf "Iteration %i: x = [%12.4f, %12.4f]\n" j x[1] x[2]

end

end;

1

2

3

4

5

6

7

let

x = randn(2)

for j in 1:6

x = x / λₙ # Normalise

x = B * x

@printf "Iteration %i: x = [%12.4f, %12.4f]\n" j x[1] x[2]

end

end;

1

2

3

4

5

6

7

8

The problem here is that for general problems we don't know , so we cannot use it for

normalisation. Fortunately it turns out, however, that pretty much any normalisation of works. For

example we can use the infinity norm:

which simply selects the largest absolute entry of the vector. Again this works as expected:

 Iteration 1: x = [4.9264, 5.0000]Iteration 1: x = [4.9264, 5.0000]
Iteration 2: x = [5.0985, 5.0000]Iteration 2: x = [5.0985, 5.0000]
Iteration 3: x = [5.0034, 4.9034]Iteration 3: x = [5.0034, 4.9034]
Iteration 4: x = [5.0001, 4.9001]Iteration 4: x = [5.0001, 4.9001]
Iteration 5: x = [5.0000, 4.9000]Iteration 5: x = [5.0000, 4.9000]
Iteration 6: x = [5.0000, 4.9000]Iteration 6: x = [5.0000, 4.9000]
Estimate for eigenvalue: 5.000000Estimate for eigenvalue: 5.000000

We also note in passing that seems to converge to the dominant eigenvalue.

Note that implies that there exists an index , such that

.

Keeping this in mind we formulate the algorithm

Algorithm 1: Power iterations

Given a diagonalisable matrix and an initial guess we iterate for

:

1. Set

2. Find the index such that

3. Compute and set (see below why)

4. Set (Normalisation)

let

x = randn(2)
for j in 1:6

x = x / maximum(abs.(x)) # Normalise

x = B * x

@printf "Iteration %i: x = [%12.4f, %12.4f]\n" j x[1] x[2]

end

@printf "Estimate for eigenvalue: %12.6f" maximum(abs.(x))

end;

1

2

3

4

5

6

7

8

9

We obtain as the estimate to the dominant eigenvalue and as the estimate of the

corresponding eigenvector.

In this algorithm . Step 4 is thus performing the normalisation we developed

above.

Furthermore is now computed as the eigenvalue estimate instead of . The idea is that if

 is already close to the eigenvector associated to the dominant eigenvalue , then

An implementation of this power method algorithm is:

power_method (generic function with 1 method)

Let's try this on a lower-triangular matrix as a test. Note that the eigenvalues of a lower-triangular

matrix are exactly the diagonal entries. We set

function power_method(A, x; maxiter=100)

 n = size(A, 1)

 x = normalize(x, Inf) # Normalise initial guess

history = Float64[] # Record a history of all βs (estimates of eigenvalue)

 for k in 1:maxiter

 y = A * x

 m = argmax(abs.(y))

α = 1 / y[m]

β = y[m] / x[m]

push!(history, β)

 x = α * y

 end

(; x, λ=last(history), history)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

5×5 Matrix{Float64}:
 1.0 1.0 1.0 1.0 1.0
 0.0 -0.75 1.0 1.0 1.0
 0.0 0.0 0.6 1.0 1.0
 0.0 0.0 0.0 -0.4 1.0
 0.0 0.0 0.0 0.0 0.0

By construction the largest eigenvalue of this matrix is . So let's track convergence:

We want to demonstrate why as more rigorously.

begin

λref = [1, -0.75, 0.6, -0.4, 0]

Make a triangular matrix with eigenvalues on the diagonal.

M = triu(ones(5,5),1) + diagm(λref)

end

1

2

3

4

5

begin

λlargest = 1.0 # Largest eigenvalue of M (by construction)

x1 = ones(size(M, 2))

results = power_method(M, x1; maxiter=70)

error = abs.(results.history .- λlargest)

plot(error; mark=:o, label="", yaxis=:log,

 title="Convergence of power iteration",

 ylabel=L"|β^{(k)} - λ_{\textrm{ref}}|", xlabel=L"k")
end

1

2

3

4

5

6

7

8

9

10

Let us first note that for our algorithm

and by construction we always have . We further note

where denotes that we take the -th element of the vector in the brackets and we further

defined , that is multiplied by the -th element of the eigenvector . Again we

assume , which implies . Under this assumption

Keeping in mind that for all we indeed observe to converge to .

A remark on zₙ ≠ 0

Convergence of power method
The above plot already suggests a linear convergence towards the exact eigenvalue. Indeed a

detailed analysis shows that the convergence rate can be computed as

Optional: Detailed derivation

So the smaller the ratio between and , the faster the convergence.

Let us take a case where . Therefore the size of determines the rate of convergence.

Let's take = -0.9.

[0.0, -0.4, 0.6, -0.9, 1.0]

and we will put these on the diagonal of a triangular matrix, such that the eigenvalues of the

resulting matrix are exactly the :

M_δ 5×5 Matrix{Float64}:
 0.0 1.0 1.0 1.0 1.0
 0.0 -0.4 1.0 1.0 1.0
 0.0 0.0 0.6 1.0 1.0
 0.0 0.0 0.0 -0.9 1.0
 0.0 0.0 0.0 0.0 1.0

 =

We introduce a slider to tune the of equation (6):

λₙ₋₁ = -0.9

begin

λ_δ = [0.0, -0.4, 0.6, λₙ₋₁, 1.0] # The reference eigenvalues we will use

end

1

2

3

M_δ = triu(ones(5, 5), 1) + diagm(λ_δ)1

Spectral transformations

The power method provides us with a simple algorithm to compute the largest eigenvalue of a

matrix and its associated eigenvector. But what if one actually wanted to compute the smallest

eigenvalue or an eigenvalue somewhere in the middle ?

let

λlargest = maximum(abs.(λref)) # Largest eigenvalue of M_δ (by construction)

x1 = ones(size(M_δ, 2))

results = power_method(M_δ, x1; maxiter=40)

error = abs.(results.history .- λlargest)
p = plot(error; mark=:o, label="", yaxis=:log, ylims=(1e-10, 3),

 title="Convergence of power iteration",

 ylabel=L"|β^{(k)} - λ_{\textrm{ref}}|",
 xlabel=L"k", legend=:bottomleft, lw=2)

λₙ = 1.0

r_power = abs(λₙ₋₁ / λₙ)

plot!(p, k -> r_power^k; ls=:dash, label=L"expected rate $| λ_{n-1} / λ_n|$",
lw=2)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

In this section we discuss an extension to power iteration, which makes this feasible. We only need

a small ingredient from linear algebra the spectral transformations.

We explore based on a few examples. Consider

⚠ TODO ⚠

Maybe pick a matrix with simpler eigenvalues

Ashift 3×3 Matrix{Float64}:
 0.4 -0.6 0.2
-0.3 0.7 -0.4
-0.1 -0.4 0.5

 =

Its eigenvalues and eigenvectors are:

Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
 2.220446049250313e-16
 0.43944487245360087
 1.160555127546399
vectors:
3×3 Matrix{Float64}:
 0.57735 0.676008 0.636852
 0.57735 -0.272642 -0.698428
 0.57735 -0.684602 0.326522

Now we add a multiple of the identity matrix, e.g.:

σ 2 =

TODO("Maybe pick a matrix with simpler eigenvalues")1

Ashift = [0.4 -0.6 0.2;
 -0.3 0.7 -0.4;

 -0.1 -0.4 0.5]

1

2

3

eigen(Ashift)1

σ = 2 # Shift1

Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
 1.9999999999999991
 2.4394448724536018
 3.1605551275463983
vectors:
3×3 Matrix{Float64}:
 0.57735 0.676008 0.636852
 0.57735 -0.272642 -0.698428
 0.57735 -0.684602 0.326522

Notice, how the eigenvectors are the same and only the eigenvalues have been shifted by .

Similarly:

Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
 0.3164001131587031
 0.40992932912404656
 0.5000000000000002
vectors:
3×3 Matrix{Float64}:
 0.636852 -0.676008 -0.57735
 -0.698428 0.272642 -0.57735
 0.326522 0.684602 -0.57735

Notice how this matrix still has the same eigenvectors (albeit in a different order) and the inverted

eigenvalues of .

[0.5, 0.409929, 0.3164]

We want to formalise our observation more rigourously. Recall that is an eigenvalue of with

(non-zero) eigenvector if and only if

We usually refer to the pair as an eigenpair of .

The statement of the spectral transformations is:

eigen(Ashift + σ * I) # Add 2 * identity matrix1

let

A⁻¹ = inv(Ashift + σ * I)

eigen(A⁻¹)

end

1

2

3

4

1 ./ eigvals(Ashift + σ * I)1

Theorem 1: Spectral transformations

Assume is diagonalisable. Let be an eigenpair of , then

1. If is invertible, then is an eigenpair of .

2. For every we have that is an eigenpair of .

3. If is invertible, then is an eigenpair of .

Proof: The result follows from a few calculations on top of (7). We proceed in order of the

statements above.

1. Let be an arbitrary eigenpair of . Since is invertible by assumption,

. Therefore for all eigenvalues of the fraction is meaningful and we

can show:

which indeed is the statement that is an eigenpair of .

2. The argument is similar to 1 and we leave it as an exercise.

3. This statement follows by combining statements 1. and 2.

Exercise 1

Assume is diagonalisable. Prove statement 2. of Theorem 1, that is for all : If

 is an eigenpair of , then is also an eigenvector of with eigenvalue .

Consider point 1. of Theorem 1 and assume that has a smallest eigenvalue

then has the eigenvalues

thus a dominating (i.e. largest) eigenvalue . Applying the power_method function (Algorithm

1) to we thus converge to from which we can deduce , the eigenvalue of closest to

zero.

Now consider point 3. and assume has been chosen such that

i.e. such that is closest to the eigenvalue . It follows

such that the power_method function converges to . From this value we can deduce ,

since we know . In other words by applying Algorithm 1 to the shift-and-invert matrix

 enables us to find the eigenvalue of closest to .

A naive application of Algorithm 1 would first compute and then apply

in each step of the power iteration. However, for many problems the explicit computation of the

inverse is numerically unstable. Instead of computing explicitly one instead obtains by

solving a linear system

for , which is done using LU factorisation. We arrive at the following algorithm, where the

changes compared to Algorithm 1 are marked in red.

Algorithm 2: Inverse iterations

Given

a diagonalisable matrix ,

a shift , such that is invertible

an initial guess

we iterate for :

1. .

2. Find the index such that

3. Set and .

4. Set

Note the additional change in step 3: In Algorithm 1 we obtained the estimate of the dominant

eigenvalue as . Here this estimate approximates , the dominant eigenvalue of

. Therefore an estimate of itself is obtained by solving

for , which yields exactly the expression shown in step 3 of Algorithm 2.

An implementation of this algorithm is given in:

inverse_iterations (generic function with 1 method)

Notice that in this implementation we make use of the fact that once an LU factorisation is

computed it can be re-used for solving multiple linear systems with changing right-hand sides: in

our case we can expect to solve many linear systems involving the matrix . Therefore we

compute the LU factorisation only once, namely at the beginning of the algorithm and before

entering the iterative loop.

function inverse_iterations(A, σ, x; maxiter=100)

A: Matrix

σ: shift
x: initial guess

 n = size(A, 1)

 x = normalize(x, Inf)

fact = lu(A - σ*I) # Compute LU factorisation of A-σI

history = Float64[]

 for k in 1:maxiter

 y = fact \ x

 m = argmax(abs.(y))
α = 1 / y[m]

β = σ + x[m] / y[m]

push!(history, β)

 x = α * y

 end

(; x, λ=last(history), history)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Since for dense matrices computing the factorisation scales , but solving linear systems

based on the factorisation only scales (recall chapter 6), this reduces the cost per iteration.

To investigate the possibilities enabled by inverse iterations, we consider a few examples using the

following triangular matrix

C 3×3 Matrix{Float64}:
-4.0 3.0 4.0
 0.0 4.0 5.0
 0.0 0.0 2.0

 =

which has eigenvalues , and .

Since it has no unique dominant eigenvalue () plain power iterations do not

converge, but rather oscillate:

C = [-4.0 3.0 4.0;

 0.0 4.0 5.0;

 0.0 0.0 2.0]

1

2

3

https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html

In contrast for inverse iterations (with) what matters are the eigenvalues of , which are

 or

Therefore there is a single dominant eigenvalue () and inverse iterations will converge to the

eigenvalue :

let

xinit = randn(size(C, 2))

res = power_method(C, xinit; maxiter=30)

plot(res.history; mark=:o, c=1, label="", lw=1.5, ylabel=L"β^{(k)}",

xlabel=L"k",

 title="Power iterations on C")

end

1

2

3

4

5

6

7

Now suppose we knew that has one eigenvalue near , such that we take . Then what

matters for convergence in the inverse iterations are the eigenvalues of , which are

 or

such that is the dominating eigenvalue. Therefore with inverse iterations

converge to :

let

σ = 0.0 # Just perform plain inverse iterations

xinit = randn(size(C, 2))

res = inverse_iterations(C, σ, xinit; maxiter=30)

plot(res.history; mark=:o, c=1, label="", lw=1.5, ylabel=L"β^{(k)}",

xlabel=L"k",

 title="Inverse iterations on C with σ = $σ")

end

1

2

3

4

5

6

7

8

9

Convergence of inverse iterations
Inserting in the place of in (6) and recalling the eigenvalue ordering (8), i.e.

 one can show similarly that inverse

iterations converge linearly with rate

This implies that convergence is fastest if is closest to the targeted eigenvalue than to all other

eigenvalues of .

Finally let us consider a case where we use a slider to be able to change the applied shift:

let

σ = -6.0

xinit = randn(size(C, 2))

res = inverse_iterations(C, σ, xinit; maxiter=30)

plot(res.history; mark=:o, c=1, label="", lw=1.5, ylabel=L"β^{(k)}",

xlabel=L"k",

 title="Inverse iterations on C with σ = $σ")

end

1

2

3

4

5

6

7

8

9

5×5 Matrix{Float64}:
 1.0 1.0 1.0 1.0 1.0
 0.0 0.75 1.0 1.0 1.0
 0.0 0.0 0.6 1.0 1.0
 0.0 0.0 0.0 -0.4 1.0
 0.0 0.0 0.0 0.0 0.0

This time the slider allows to tune the value of (which we store in the variable σT):

σT = 0.4

This value of results in a rate:

0.5714285714285713

begin

λT = [1, 0.75, 0.6, -0.4, 0] # The reference eigenvalues we will use

T = triu(ones(5, 5), 1) + diagm(λT)

end

1

2

3

4

begin

compute |λ_5 - σ| > |λ_4 - σ| > |λ_3 - σ| > |λ_2 - σ| > |λ_1 - σ|
We need sort to get the data in that order

diff_sorted = sort(abs.(λT .- σT); rev=true)

take last element (|λ_1 - σ|) and last-but-one (|λ_2 - σ|)
r_inviter = diff_sorted[end] / diff_sorted[end-1]

end

1

2

3

4

5

6

7

8

let

The eigenvalue the iteration targets

i = argmin(abs.(λT .- σT))

λtarget = λT[i]

p = plot(title="Convergence",
ylabel=L"|β^{(k)} - λ_{\textrm{ref}}|", xlabel=L"k", legend=:bottomleft,
yaxis=:log, ylims=(1e-10, 3))

q = plot(title="History", xlabel=L"k", ylabel=L"β^{(k)}",

 legend=:bottomleft, ylims=(-0.6, 1.2))

hline!(q, λT, ls=:dash, label=L"eigenvalues of T", c=2, lw=1.5)

hline!(q, [σT], ls=:dash, label=L"shift $σ$", c=3, lw=1.5)

if abs(σT - λtarget) > 1e-10 # Guard to prevent numerical issues

results = inverse_iterations(T, σT, xstart; maxiter=20)

error = abs.(results.history .- λtarget)

plot!(p, error; mark=:o, label="", lw=1.5)

plot!(p, k -> r_inviter^k; ls=:dash, label="expected rate", lw=2)

plot!(q, results.history, mark=:o, c=1, label="", lw=1.5)

end

plot(p, q; layout=(1,2))

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Optional: Dynamic shifting

In the discussion in the previous section we noted that the convergence of inverse iterations is best

if is chosen close to the eigenvalue of the matrix . Since inverse iterations (Algorithm 2)

actually produce an estimate for the eigenvalue in each iteration (the), a natural idea is to

update the shift: instead of using the same in each iteration, we select a different

dynamically based on the best eigenvalue estimate currently available to us.

This also implies that for solving the linear system in step 1, i.e. the system

matrix is different for each . Therefore pre-computing the LU factorisation before entering the

iteration loop is no longer possible.

We arrive at the following implementation for an inverse iteration algorithm with dynamic

shifting:

dynamic_shifting (generic function with 1 method)

Since we now need to compute a fresh LU factorisation in each iteration, the overall cost of

dynamic_shifting is larger than the cost of inverse_iterations . On the upside, convergence is

function dynamic_shifting(A, σ, x; maxiter=100, tol=1e-8)

A: Matrix

σ: shift

x: initial guess

 n = size(A, 1)
 x = normalize(x, Inf)

history = Float64[]

 for k in 1:maxiter

 y = (A - σ*I) \ x # LU-factorise (A - σ*I) and solve system

 m = argmax(abs.(y))

α = 1 / y[m]

β = σ + x[m] / y[m]

push!(history, β)

 x = α * y

if abs(σ - β) < tol # We are converged, so exit the iterations.

break

end

σ = β

 end

(; x, λ=last(history), history)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

improved: We go from linear to quadratic convergence (see chapter 8.3 of Driscoll, Brown:

Fundamentals of Numerical Computation).

This is easily checked numerically. We use the same matrix

5×5 Matrix{Float64}:
 1.0 1.0 1.0 1.0 1.0
 0.0 0.75 1.0 1.0 1.0
 0.0 0.0 0.6 1.0 1.0
 0.0 0.0 0.0 -0.4 1.0
 0.0 0.0 0.0 0.0 0.0

and introduce another slider to tune the value of the initial shift , which we store in the variable

σD :

σD = 0.4

The much faster quadratic convergence is clearly visible.

Numerical analysis

T1

xstart = randn(size(T, 2));1

https://tobydriscoll.net/fnc-julia/krylov/inviter.html#dynamic-shifting
https://teaching.matmat.org/numerical-analysis/

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

