
Click here to view the PDF version.

Iterative methods for linear systems

Richardson iterations

Computational cost

Convergence analysis

Choosing a good preconditioner

Error control and stopping criterion

Jacobi and Gauss-Seidel method

Linear systems involving symmetric positive-definite matrices

Steepest descent method

Optional: Preconditioned steepest descent

Optional: Conjugate gradient method

begin

using LinearAlgebra

using PlutoUI

using PlutoTeachingTools

using Plots

using LaTeXStrings

using HypertextLiteral

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

Table of Contents

https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.pdf

Iterative methods for linear systems
In the previous notebook we looked at direct methods for solving linear systems based on

LU factorisation of the system matrix . We saw that even for sparse matrices we may need

computational time to perform the factorisation and memory and to store the and

factors due to fill in.

Both can make the solution of linear systems prohibitively expensive for large matrices. In this

notebook we will develop iterative methods. These build a sequence of solution vectors , which is

designed to converge to the solution , that is . Typically these methods are

based on performing matrix-vector products in each iteration step. Exactly this difference to the

direct methods –- that is not employing the matrix , but only the matrix-vector product –- is what

often leads to an overall reduction of the computational cost.

Richardson iterations

A general framework for building iterative methods for solving linear systems is Richardson's

method. The idea is to introduce a matrix splitting where is an invertible matrix

and . With this idea we rewrite to

If we define we observe this to be exactly the setting of the multi-

dimensional fixed-point methods we developed in chapter 4, i.e. our goal is to obtain a solution

with .

Starting from an initial vector we thus iterate

that is in each step we solve the linear system where .

Assuming this sequence converges, i.e. that , then

i.e. the limit is indeed the solution to the original equation.

The matrix is usually referred to as the preconditioner. Since we need to solve a linear system

 in each iteration , an important criterion for a good preconditioner is that solving

such linear systems is cheap.

Let us rewrite equation (2) as

The quantity appearing in this expression is the residual at iteration . As usual

it measures how far the iterate is from being a solution to : if , then indeed

, i.e. that is the solution.

We formulate Richardson's iterations:

Algorithm 1: Richardson iteration

Let be a system matrix, right-hand side , an invertible preconditioner

, an initial guess as well as the desired convergence tolerance . For

 iterate:

1. Compute residual

2. Solve linear system for the update .

3. Compute new .

The iteration is stopped as soon as .

We will discuss the rationale behind the stopping condition in the subsection on

error control below.

Comparing with our discussion on the fixed point methods we studied in chapter 4 we notice that

Algorithm 1 is essentially fixed-point iteration with the map given by

and as discussed above the fixed point necessarily satisfies and

therefore is a solution to the linear system.

An implementation of Algorithm 1 in Julia is given by

https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html

richardson (generic function with 1 method)

Let us consider the test problem with

A 100×100 Matrix{Float64}:
24.6322 -0.888549 -0.297453 0.538739 … -1.09367 0.180984 -0.532819
-0.448785 54.1411 -1.08232 -1.78417 -1.74007 -0.501498 0.689316
-0.654392 2.34095 41.2123 -1.57899 -0.365197 0.460731 -0.551996
 1.27771 -0.969327 0.469442 17.1368 0.538514 -0.0997164 1.98605
 1.32718 0.634077 0.924786 2.45323 0.79874 0.334833 1.06123
 0.617128 -2.29557 1.00142 0.608915 … 0.197359 -0.40848 0.636079
 0.816018 -0.422246 -0.858147 0.28971 -0.703497 0.255299 1.2064
 ⋮ ⋱

-0.164932 1.3706 -0.135661 -0.54131 2.18671 -0.261669 0.38852
 0.791482 1.55509 0.31555 0.771109 … -0.741686 -0.727651 0.510844
-0.24452 0.777849 -0.0140354 -0.754305 0.420801 -0.893314 -0.257418
-1.3224 -1.72525 -0.0151293 -1.07301 35.9432 1.00866 -0.474047
 0.428035 0.148224 -0.528944 -1.21098 0.386844 23.7041 -1.69224
-0.798464 -1.2353 -0.33276 -0.210316 -0.576393 -0.640568 38.8682

 =

In this case the problem is sufficiently small that it's reference can still be computed by a direct

method, e.g. the LU factorisation performed by default when employing Julia's \ operator:

x_reference

[0.0480202, 0.0112776, 0.00547968, 0.0190455, 0.00780689, 0.0210903, 0.0155217, 0.04049, 0

 =

function richardson(A, b, P; x=zero(b), tol=1e-6, maxiter=100)

history = [float(x)] # Keep history of xs

relnorms = Float64[] # Track relative residual norm

for k in 1:maxiter

r = b - A * x

relnorm = norm(r) / norm(b)

push!(relnorms, relnorm)

if relnorm < tol

break

end

u = P \ r

x = x + u

push!(history, x)

end

(; x, relnorms, history) # Return current iterate and history

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Generate a random matrix, which has large entries on the diagonal

A = randn(100, 100) + Diagonal(15 .+ 50rand(100))

1

2

b = rand(100);1

x_reference = A \ b1

To apply Richeardson iterations, we need a preconditioner . Due to the construction of we

chose it has its largest entries in each row on the diagonal. A particularly simple preconditioner,

which typically works well for such matrices is to use the diagonal of as , i.e.

P 100×100 Diagonal{Float64, Vector{Float64}}:
24.6322 ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅
 ⋅ 54.1411 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ 41.2123 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 17.1368 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 38.1282 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 ⋮ ⋱

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ 14.6848 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 35.9432 ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 23.7041 ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 38.8682

 =

Applying this preconditioner within the Richardson iterations, yields the correct result to the

chosen tolerance:

3.541619577468458e-8

P = Diagonal(A)1

begin

richardson_result = richardson(A, b, P; tol=1e-6)

maximum(abs, richardson_result.x - x_reference)

end

1

2

3

4

Computational cost

Our main motivation for considering iterative methods was to overcome the computational

cost of Gaussian elimination / LU factorisation for solving linear systems.

Let us revist Richardson iteration (Algorithm 1) and discuss the computational cost for the case

where is a full matrix. Recall that the cost of LU factorisation scaled as for this

setting.

1. In the first step the most costly operation is the computation of the matrix-vector product

. For a full matrix this costs .

2. In the second step we solve . If is a diagonal matrix (like we just considered),

this costs , whereas for a triangular matrix (where one would perform backward or

forward substitution) the cost is .

3. The computation of the new again costs only .

let

plot(richardson_result.relnorms;

 yaxis=:log, mark=:o, lw=2, ylabel=L"||r|| / ||b||",
 title="Richardson convergence", label=L"$P =

\textrm{Diagonal(}A\textrm{)}$")

end

1

2

3

4

5

Overall for full matrices the cost of Richardson iterations is thus only .

For sparse matrices can computed in computational cost. Similarly using clever

preconditioners step 2 can be done in time. Examples would be a sparsity-adapted forward

substitution algorithm or again a diagonal preconditioner. Overall Richardson iterations thus only

cost –- in stark contrast to the cost also required for LU factorisation in this setting.

Observation: Computational cost of iterative methods

When solving linear systems using iterative methods, the computational cost (per iteration)

scales

for full matrices as

for sparse matrices as .

A recurring theme is that the cost of the matrix-vector product essentially determis the

cost of the iterative scheme.

Convergence analysis

Having established above that Richardson iteration indeed leads to numerically the correct answer,

we proceed to analyse its convergence.

As an iterative method Algorithm 1 can be brought into the setting of a fixed point method

 by choosing

In line with our discussion in Root finding and fixed-point problems the convergence depend on

the properties of the Jacobian (i.e the derivative) of this map at the fixed point. The term

does not depend on and thus drops, for the rest we compute:

where the matrix is usually referred to as the iteration matrix.

Previously we considered scalar-valued functions where the condition for convergence was that

. A careful analysis in fact reveals that for vector-valued fixed-point maps like in the

case of Richardson iterations this condition becomes

https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html

i.e. the modulus is simply replaced by the matrix norm.

As a reminder, recall that the definition of the matrix norm for a matrix is

We summarise in a theorem:

Theorem 1

Given a system matrix , RHS and preconditioner invertible, the

Richardson method with iteration matrix converges for any initial guess if

. Moreover

This is linear convergence with rate .

Notice that the theorem mentions that Richardson iterations converges for any initial guess, which

for general fixed-point methods is not true.

This is in fact a consequence of the fact that is a linear function, i.e. that its Taylor expansion

terminates after the linear term as we easily verify by inserting our obtained expressions into the

right-hand side:

Denoting the error in the -th iteration as one can thus show that

such that if the error is guaranteed to shrink in an iteration, independent on the current

iterate .

This is in contrast to the Convergence analysis discussion in Root finding and fixed-point problems

where for the case of non-linear fixed point functions we found that

where thus this was not an exact equality and one can thus only ensure the error to shrink for to

 if the higher-order terms are small enough, i.e. if is small enough, i.e. if one starts

sufficiently close to the fixed point .

Exercise

Show that for the fixed-point map of Richardson iteration we

indeed have that where . Making use of the inequality

and by adapting our arguments in the convergence analysis discussion of Root finding and

fixed-point problems show that for Richardson iteration the error always tends to zero as the

iteration progresses, i.e. that .

From Theorem 1 we take away that the norm of iteration matrix is the crucial quantity to

determine not only if Richardson iterations converge, but also at which rate. Recall in Lemma 4 of

Direct methods for linear systems we had the result that for any matrix

With this and the condition for convergence in Theorem we can understand the role of

preconditioning. If we were not to perform any preconditioning, i.e. , then

becomes

https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html

100×100 Matrix{Float64}:
 24.6322 -0.888549 -0.297453 0.538739 … -1.09367 0.180984 -0.532819
 -0.448785 54.1411 -1.08232 -1.78417 -1.74007 -0.501498 0.689316
 -0.654392 2.34095 41.2123 -1.57899 -0.365197 0.460731 -0.551996
 1.27771 -0.969327 0.469442 17.1368 0.538514 -0.0997164 1.98605
 1.32718 0.634077 0.924786 2.45323 0.79874 0.334833 1.06123
 0.617128 -2.29557 1.00142 0.608915 … 0.197359 -0.40848 0.636079
 0.816018 -0.422246 -0.858147 0.28971 -0.703497 0.255299 1.2064
 ⋮ ⋱

 -0.164932 1.3706 -0.135661 -0.54131 2.18671 -0.261669 0.38852
 0.791482 1.55509 0.31555 0.771109 … -0.741686 -0.727651 0.510844
 -0.24452 0.777849 -0.0140354 -0.754305 0.420801 -0.893314 -0.257418
 -1.3224 -1.72525 -0.0151293 -1.07301 35.9432 1.00866 -0.474047
 0.428035 0.148224 -0.528944 -1.21098 0.386844 23.7041 -1.69224
 -0.798464 -1.2353 -0.33276 -0.210316 -0.576393 -0.640568 38.8682

69.23961161283752

However, when using a diagonal preconditioner P = Diagonal(A) , i.e. , then

0.8697553418070331

Which is much smaller, in particular less than . Therefore only the preconditioned iterations

converge:

A1

let

B = I - A # Iteration matrix for P = I, i.e. no preconditioner

norm_b = sqrt(maximum(eigvals(B' * B)))

end

1

2

3

4

let

P = Diagonal(A)
B = I - inv(P) * A # Iteration matrix for P = Diagonal(A)

norm_b = sqrt(maximum(eigvals(B' * B)))

end

1

2

3

4

5

Choosing a good preconditioner

From the above experiments we notice:

Observation: Preconditioners

A good preconditioner in the Richardson iterations, satisfies the following properties:

1. It is cheap to invert, that is linear systems are cheap to solve.

2. The iteration matrix norm is as small as possible,

let

P = Diagonal(A)

richardson_diagonal = richardson(A, b, P; tol=1e-10, maxiter=30)

richardson_no_preconditioner = richardson(A, b, I; tol=1e-10, maxiter=30)

plot(richardson_diagonal.relnorms;
 yaxis=:log, mark=:o, lw=2, ylabel=L"||r|| / ||b||",
 label=L"$P = \textrm{Diagonal(}A\textrm{)}$", legend=:bottomright,

 ylims=(1e-10, 1e5))

plot!(richardson_no_preconditioner.relnorms;

 label=L"$P = I$", lw=2, mark=:o)

end

1

2

3

4

5

6

7

8

9

10

11

12

definitely smaller than one (to ensure convergence).

Clearly condition 2. suggests that the perfect preconditioner is , such that . In this

setting , i.e. we converge in a single Richardson step ! The trouble of

this choice is that step 2 of Algorithm 1 (Richardson iteration) now effectively requires to solve the

system for , i.e. we are back to solving the original problem.

On the other hand condition 1. suggests to use (since the identity is cheapest to invert

–- nothing needs to be done). However, this does not really do anything and does thus not reduce

the value of . It will just be .

In practice we thus need to find a compromise between the two. As mentioned above standard

choices for the preconditioner are:

the diagonal of

the lower triangle of

another common choice is the incomplete LU factorisation, i.e. where one seeks a factorisation

 with a lower triangular matrix and an upper triangular , which only

approximately factorises . This gives additional freedom in designing the factorisations, in

particular to avoid fill-in for sparse matrices.

in many physics or engineering applications results from a physical model. A

preconditioner can thus be resulting from an approximation to the employed physical

model (e.g. by dropping the modelling of some physical effects).

We will not discuss the art of designing good preconditioners any further at this stage. Interested

readers are referred to the excellent book Youssef Saad Iterative methods for Sparse Linear Systems,

SIAM (2003).

Error control and stopping criterion
Let us return to clarifying the choice of the stopping criterion in the Richardson iterations

(Algorithm 1).

As usual our goal is to control the error based on our stopping criterion, but without

having access to the exact solution . However, we know that , since is just the

solution to the linear system we want to solve.

Similarly directly implies

https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf

where we defined the "perturbed" right-hand side . Notably is thus exact solution of a linear

system involving and this perturbed RHS, while we actually care to find the true solution

obtained by solving the system employing an "unperturbed" right-hand side .

We are thus in exactly the same setting as our final section on Numerical stability in our discussion

on Direct methods for linear systems where instead of solving we are only able to solve

the perturbed system .

We can thus directly apply Theorem 2 from Direct methods for linear systems, which states that

Keeping in mind that here and we thus obtain

Combining this with our stopping criterion from Algorithm 1, that is

we finally obtain

In other words our stopping criterion ensures that the relative error of the returned solution is

smaller than times the chosen tolerance.

If the matrix is well-conditioned, i.e. is close to , then the relative residual provides a

good estimate of the true error and our stopping criterion is appropriate. However, if is large,

even a small residual may imply a large error in the returned solution.

Alternative derivation without applying the previous Theorem 2

https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html

Jacobi and Gauss-Seidel method

Note: We will only discuss the high-level ideas of this part in the lecture. You can expect that there

will not be any detailed exam questions on Jacobi and Gauss-Seidel without providing you with the

formulas and algorithms.

We will now briefly discuss the Jacobi and Gauss-Seidel methods, which can be seen as particular

cases of Richardson iterations.

Recall equation (2)

In the Jacobi method the key idea is to use the diagonal of the matrix as the preconditioner

and to explicitly insert this expression into equation (2). Rewriting we obtain in the -st

iteration of Jacobi's method

The diagonal structure of allows the explicit computation of . Its -th component can be

obtained as

for all and as long as .

jacobi (generic function with 1 method)

The Gauss-Seidel method employs the lower triangular part of as the preconditioner (in Julia

P = LowerTriangular(A)):

By inserting the lower-triangular into (2) we obtain in the -st iteration of Gauss-Seidel:

function jacobi(A, b; x=zero(b), tol=1e-6, maxiter=100)

history = [float(x)] # History of iterates

relnorms = Float64[] # Track relative residual norm

n = length(x)

xᵏ = x
for k in 1:maxiter

xᵏ⁺¹ = zeros(n)

for i in 1:n

Aᵢⱼxⱼ = 0.0

for j in 1:n

if i ≠ j

Aᵢⱼxⱼ += A[i, j] * xᵏ[j]

end

end # Loop j

xᵏ⁺¹[i] = (b[i] - Aᵢⱼxⱼ) / A[i, i]

end # Loop i

relnorm_rᵏ = norm(b - A * xᵏ⁺¹) / norm(b) # Relative residual norm

push!(relnorms, relnorm_rᵏ) # Push to history

if relnorm_rᵏ < tol # Check convergence

break

end

xᵏ = xᵏ⁺¹

push!(history, xᵏ)

end # Loop k
(; x=xᵏ, relnorms, history)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Using forward substitution to solve this linear system leads to the following form for the -th

component of the vector .

for all and as long as .

Notice that Gauss-Seidel is very similar to Jacobi's method, just with the small difference that for

computing the new component we use the components for , which have

already been updated to their new values.

gauss_seidel (generic function with 1 method)

These two cases just provide two examples of the many flavours of Richardson iterations, which are

used in practice. A good overview provides chapter 4 of Youssef Saad Iterative methods for Sparse

Linear Systems, SIAM (2003).

We return to our example problem with

function gauss_seidel(A, b; x=zero(b), tol=1e-6, maxiter=100)

history = [float(x)] # History of iterates

relnorms = Float64[] # Track relative residual norm

n = length(x)

xᵏ = x
for k in 1:maxiter

xᵏ⁺¹ = zeros(n)

for i in 1:n

Aᵢⱼxⱼ = 0.0

for j in 1:i-1

Aᵢⱼxⱼ += A[i, j] * xᵏ⁺¹[j]

end # Loop j

for j in i+1:n

Aᵢⱼxⱼ += A[i, j] * xᵏ[j]

end # Loop j

xᵏ⁺¹[i] = (b[i] - Aᵢⱼxⱼ) / A[i, i]
end # Loop i

relnorm_rᵏ = norm(b - A * xᵏ⁺¹) / norm(b) # Relative residual norm

push!(relnorms, relnorm_rᵏ) # Push to history

if relnorm_rᵏ < tol # Check convergence

break

end

xᵏ = xᵏ⁺¹

push!(history, xᵏ)
end # Loop k

(; x=xᵏ, relnorms, history)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf

100×100 Matrix{Float64}:
 24.6322 -0.888549 -0.297453 0.538739 … -1.09367 0.180984 -0.532819
 -0.448785 54.1411 -1.08232 -1.78417 -1.74007 -0.501498 0.689316
 -0.654392 2.34095 41.2123 -1.57899 -0.365197 0.460731 -0.551996
 1.27771 -0.969327 0.469442 17.1368 0.538514 -0.0997164 1.98605
 1.32718 0.634077 0.924786 2.45323 0.79874 0.334833 1.06123
 0.617128 -2.29557 1.00142 0.608915 … 0.197359 -0.40848 0.636079
 0.816018 -0.422246 -0.858147 0.28971 -0.703497 0.255299 1.2064
 ⋮ ⋱

 -0.164932 1.3706 -0.135661 -0.54131 2.18671 -0.261669 0.38852
 0.791482 1.55509 0.31555 0.771109 … -0.741686 -0.727651 0.510844
 -0.24452 0.777849 -0.0140354 -0.754305 0.420801 -0.893314 -0.257418
 -1.3224 -1.72525 -0.0151293 -1.07301 35.9432 1.00866 -0.474047
 0.428035 0.148224 -0.528944 -1.21098 0.386844 23.7041 -1.69224
 -0.798464 -1.2353 -0.33276 -0.210316 -0.576393 -0.640568 38.8682

and

[0.963156, 0.122042, 0.29464, 0.684766, 0.238242, 0.399009, 0.738242, 0.8636, 0.518963, 0.

On this problem the convergence is as follows:

A1

b1

Linear systems involving symmetric positive-

definite matrices

In many applications in engineering and the sciences the arising system matrices have additional

properties, which can be exploited to obtain better-suited algorithms. An important case are the

symmetric positive definite matrices.

let

result_jacobi = jacobi(A, b; tol=1e-10, maxiter=30)

result_gauss_seidel = gauss_seidel(A, b; tol=1e-10, maxiter=30)

P = Diagonal(A)
richardson_diagonal = richardson(A, b, P; tol=1e-6, maxiter=30)

richardson_no_preconditioner = richardson(A, b, I; tol=1e-6, maxiter=30)

plot(result_jacobi.relnorms;

 yaxis=:log, mark=:o, lw=2, ylabel=L"||r|| / ||b||",
 label="Jacobi", legend=:topright)

plot!(result_gauss_seidel.relnorms;

 label="Gauss Seidel", lw=2, mark=:o)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

This part of the notes only provides a condensed introduction. A more detailed, but very accessible

introduction to the steepest descent and conjugate gradient methods discussed in this section

provides Jonathan Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing

Pain (1994).

Let us first recall the definition of symmetric positive definite matrices.

Definition: Positive definite

A matrix is called positive definite if

For symmetric matrices we additionally have that . Symmetric positive definite matrices

(often abbreviated as s.p.d. matrices) arise naturally in physical systems when looking for

configurations minimising their energy. A result underlining this construction is

Theorem 2

An matrix is s.p.d. if and only if all its eigenvalues are real and positive.

To every linear system involving an s.p.d. system matrix we can associate an energy

function

Using basic vector calculus one shows that

Setting the gradient to zero, we obtain the stationary points. The corresponding equation

only has a single solution, provided that is non-singular. Since the Hessian is

positive definite, this stationary point is a minimum. As a result we obtain

Proposition 3

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Given an s.p.d. matrix , the solution of the system is the unique minimum

of the function , i.e.

Importantly there is thus a relation between optimisation problems and solving linear systems if

the system matrix is s.p.d.

SPD matrices are not unusual. For example, recall that in polynomial regression problems (see

least-squares problems in Interpolation), where we wanted to find the best polynomial through the

points for by minimising the least-squares error, we had to solve the normal

equations

where are the unknown coefficients of the polynomial , is the vector

collecting all values and the is the Vandermonde matrix

In this case the system matrix is always s.p.d.

Steepest descent method

If we view the problem of solving linear systems as an optimisation problem, a relatively simple

idea is to construct an iterative method, where at every step we try to decrease the energy

function .

To guide our thoughts we consider a 2D problem which is easy to visualise. We take as an example

such that

https://teaching.matmat.org/numerical-analysis/05_Interpolation.html

A2d 2×2 Matrix{Float64}:
 1.0 0.0
 0.0 20.0

 =

b2d [0.0, 0.0] =

ϕ (generic function with 1 method)

This problem is visualised as a contour plot below:

Now suppose we have an estimate of the solutin of shown above by the blue dot.

This is also an estimate of the minimum of . Our goal is thus to find a satisfying

, i.e. to get closer to the minimum (blue triangle).

A2d = [1.0 0.0;

 0.0 20.0]

1

2

b2d = [0.0;
 0.0]

1

2

ϕ(x₁, x₂) = x₁^2 + 20 * x₂^21

The gradient provides the slope of the function at in the upwards direction.

Therefore, taking a step along the direction of takes us downhill (see green arrow). We thus

propose an algorithm

where we used that , and where is a parameter determining how far to

follow along the direction of the negative gradient.

Note, that this method is quite related to Richardson's iterations: for we actually recover

Algorithm 1 with .

Rationale for introducing αₖ. Or: why not just take αₖ = 1 ?

Since overall our goal is to find the minimum of , a natural idea to determine exactly such that

we make the value of as small as possible. We compute

where

and

We notice that is a second-degree polynomial in . Setting its

gradient to zero gives us the which minimises the as much as possible in this step. From

we obtain the optimal step size as

In summary we obtain the algorithm:

Algorithm 2: Steepest descent method

Let be an s.p.d. system matrix, right-hand side , an initial guess

and convergence threshold .

Compute the inital residual . Then for iterate:

1. Compute

2. Step size: (Optimal because of (12))

3. Take step: .

4. Update residual

The iteration is stopped as soon as .

Notice that in this algorithm we used the trick

to compute the residual from and , that is without computing another matrix-

vector product. As matrix-vector products scale as , but vector operations only as this

saves computational cost.

An implementation of this algorithm is given by the following function:

steepest_descent_simple (generic function with 1 method)

Running it on our 2x2 example problem plotted above it produces the following steps (first 6 steps

shown).

We realise that convergence is steadily towards the minimum, but seems to oscillate around the

"best possible path". We will see in a second why this is.

function steepest_descent_simple(A, b; x=zero(b), tol=1e-6, maxiter=100)

history = [float(x)] # History of iterates

relnorms = Float64[] # Track relative residual norm

x = x

r = b - A * x

for k in 1:maxiter

relnorm = norm(r) / norm(b)

push!(relnorms, relnorm)

if relnorm < tol

break

end

Ar = A * r

α = dot(r, r) / dot(r, Ar)

x = x + α * r

r = r - α * Ar

push!(history, x)

end

(; x, history, relnorms)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

In line with our previous discussion we can again view Algorithm 2 as a fixed-point method

, this time with fixed-point function

where is meant to indicate the step size determined according to equation (12). Clearly a

fixed-point of this function satisfies and thus .

While the details are more involved and beyond our scope, applying the usual convergence theory

on fixed-point methods yields the following observation:

Theorem 4: Convergence of steepest descent

Given an s.p.d. matrix and a right-hand side the solution of the linear system

 can be obtained by applying steepest descent starting from any initial position .

The following error estimate holds:

where is a positive constant. This is linear convergence with rate .

The main result is thus that steepest descent always converges. However, if is large the

convergence can be slow. Here is a plot of the rate with increasing . Recall, that smaller rate means

faster convergence and a rate of is essentially stagnation.

We try steepest descent on the following random SPD matrix.

100×100 Matrix{Float64}:
 7.34367 -0.585298 0.407312 … 0.0422389 -0.454127 -0.434297
 -0.585298 8.87871 -1.0203 -0.466236 -0.16303 0.234427
 0.407312 -1.0203 8.4198 0.94011 -0.238325 -0.7371
 -0.0204829 0.893168 -0.145133 0.153914 -0.0695584 1.01752
 -0.0217503 0.541763 0.0621078 -0.108615 0.321176 0.0715953
 -0.699161 -0.863512 -0.333273 … 0.350777 0.676923 0.100415
 0.0897347 0.737161 -0.143928 0.533879 0.134155 -0.0818793
 ⋮ ⋱

 0.230808 0.210676 0.833934 0.179174 -0.373898 -0.56188
 0.108447 0.06391 -0.0396548 … -0.100483 -0.0943446 0.0192741
 1.16354 -0.0909816 0.659692 -0.0642344 0.130386 -0.358115
 0.0422389 -0.466236 0.94011 9.16821 0.77406 -0.067472
 -0.454127 -0.16303 -0.238325 0.77406 8.0638 0.453979
 -0.434297 0.234427 -0.7371 -0.067472 0.453979 5.82947

begin

Generate a random s.p.d. matrix
U, Σ, V = svd(randn(100, 100))

Aₛ = U * Diagonal(abs.(Σ)) * U'

end

1

2

3

4

5

The system matrix has a condition number larger well larger than :

352.78454970699397

Still, as the theory predicts, the method converges. However, convergence gets slow after a while

and approaches the theoretical rate

rate_steep_desc 0.9943468418797361 =

bₛ = ones(100);1

cond(Aₛ)1

rate_steep_desc = (cond(Aₛ) - 1) / (cond(Aₛ) + 1)1

let

descent = steepest_descent_simple(Aₛ, bₛ; tol=1e-6, maxiter=40)

plot(descent.relnorms;

yaxis=:log, mark=:o, lw=2, ylabel=L"||r|| / ||b||", ylims=(5e-2, 1.3),
title="Steepest descent convergence", label="Observed convergence", c=2)

plot!(1:40, x -> 0.15rate_steep_desc^x, lw=2, ls=:dash, label="Theoretical

rate", c=2)

end

1

2

3

4

5

6

7

8

9

Optional: Preconditioned steepest descent

We noticed above that a condition number is providing the highest convergence rate for

steepest descent. For cases where the condition number is large, a potential cure is to apply

preconditioning. The idea is similar to Richardson iteration. Assume we have a matrix . Then

instead of applying steepest descent to we instead apply it to

such that this new method will now converge as

If we use a good preconditioner, then and convergence accelerates.

Without going into many details, we remark that there are a few subtleties that apply:

Even if and are s.p.d. matrices, the matrix may not be s.p.d.. Therefore a practical

implementation of preconditioned gradient descent is not realised by blindly applying the

plain algorithm to , but instead by "inlining" the application of into the actual

algorithm. At the -th iteration we thus want to update the solution

using the preconditioned residual

Following through with this change also in the computation of the optimal step size leads to

, thus the following algorithm:

Algorithm 3: Preconditioned steepest descent method

Let be an s.p.d. system matrix, right-hand side , preconditioner

, an initial guess and convergence threshold .

Compute the inital residual . Then for iterate:

1. Solve for (This is the new step)

2. Compute (This has been changed)

3. Step size:

4. Take step: .

5. Update residual

The iteration is stopped as soon as .

Similar to our discussion in the context of Richardson iterations, the choice of the

preconditioner is delicate. The "perfect" preconditioner brings our condition number

down to , but requires us to solve the full problem in the first step of

Algorithm 3. On the other hand no preconditioning, i.e. , gives a cheap computation of

 from , but does nothing to reduce the conditioning. Often a simple

preconditioner, such as the diagonal of the matrix already provides noteworthy

improvements. For example:

steepest_descent (generic function with 1 method)

Optional: Conjugate gradient method

Recall that the key idea of steepest descent was to employ the update

that is to follow in the direction of maximal descent –- i.e. along the direction of the negative gradient

of .

While this is certainly a natural choice, we also saw that this can lead to a rather unsteady

convergence behaviour:

One way to cure this behaviour is in fact make a rather different choice for the update direction.

While for the first update we keep we subsequently choose directions with the

property

This property of the vectors is usually called -orthogonality. Based on this update direction

we iterate as

with the optimal step size now being given by

The next is found by -orthogonalising against all previous with .

Perhaps surprisingly this can be achieved by the following recurrent algorithm

This is called the Conjugate gradient method and despite its invention in 1952 is still the state-of-

the-art method for solving linear systems or optimisation problems involving s.p.d. matrices.

Studying its convergence leads to the following strong result:

Theorem 4: Convergence of Conjugate Gradient (CG)

Given an s.p.d. matrix and a right-hand side the solution of the linear system

 can be obtained by applying the conjugate gradient algorithm starting from any initial

position in at most steps in exact arithmetic. Moreover the following error estimate

holds:

where is a positive constant. This is linear convergence with rate .

Notice (1) that this method is guaranteed to converge after steps and (2) that the rate

deteriorates much slower as the condition number increases (recall that smaller rates are better):

https://en.wikipedia.org/wiki/Conjugate_gradient_method

Indeed for our 2x2 matrix example two steps of CG are enough:

let

p = plot(κ -> (κ-1)/(κ+1), xaxis=:log, xlims=(1, 10^3), label="Steepest

descent", xlabel=L"κ(A)", ylabel="Rate", lw=3)

plot!(p, κ -> (sqrt(κ)-1)/(sqrt(κ)+1), lw=3, label="Conjugate gradient",

ls=:dash)

end

1

2

3

4

Furthermore we note our random matrix example to converge noticably faster:

rate_cg 0.8989008486204519 =

rate_cg = (sqrt(cond(Aₛ)) - 1) / (sqrt(cond(Aₛ)) + 1)1

A (non-optimised) CG implementation is:

conjugate_gradient_simple (generic function with 1 method)

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

function conjugate_gradient_simple(A, b; x=zero(b), tol=1e-6, maxiter=100)

history = [float(x)] # History of iterates

relnorms = Float64[] # Track relative residual norm

r = b - A * x

p = r

for k in 1:maxiter

relnorm = norm(r) / norm(b)

push!(relnorms, relnorm)

if relnorm < tol

break

end

Descent along conjugate direction p (instead of along r)

Ap = A * p

α = dot(r, r) / dot(p, Ap)

x = x + α * p

r_new = r - α * Ap

Update conjugate direction p

β = dot(r_new, r_new) / dot(r, r)

p = r_new + β * p

r = r_new

push!(history, x)

end

(; x, relnorms, history)
end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

