
Click here to view the PDF version.

Direct methods for linear systems

A difficult example

Motivation: The \ (backslash) operator

Solving triangular systems

LU factorisation

Running Algorithm 3

LU factorisation with pivoting

Solving linear systems based on LU factorisation

Optional: More details on pivoting

Memory usage and fill-in

Sparse matrices

Memory: LU factorisation of full matrices

Memory: LU factorisation of sparse matrices

Computational cost of LU factorisation

Scalar product

Matrix-vector product

LU factorisation

Numerical stability

Matrix condition numbers and stability result

Computing condition numbers

⚠ TODO ⚠

begin

using LinearAlgebra

using SparseArrays

using PlutoUI

using PlutoTeachingTools

using HypertextLiteral

end

: @htl, @htl_str

1

2

3

4

5

6

7

Table of Contents

https://teaching.matmat.org/numerical-analysis/06_Direct_methods.pdf

Direct methods for linear systems
In the previous chapter on polynomial interpolation we were already confronted with the need to

solve linear systems, that is a system of equations of the form

where we are given a matrix as well as a right-hand side . As the solution we

seek the unknown .

A difficult example

Solving linear equations is a standard exercise in linear algebra and you probably have already done

it in previous courses. However, you might also know that solving such linear systems is not always

equally easy.

Let us consider a family of innocent-looking matrices, which are famously ill-conditioned, the

Hilbert matrices. Here we show the 10 by 10 case. Feel free to increase the nmax to make the

problem even more challenging:

nmax = 10

M_difficult
10×10 Matrix{Float64}:
 0.5 0.333333 0.25 0.2 … 0.111111 0.1 0.0909091
 0.333333 0.25 0.2 0.166667 0.1 0.0909091 0.0833333
 0.25 0.2 0.166667 0.142857 0.0909091 0.0833333 0.0769231
 0.2 0.166667 0.142857 0.125 0.0833333 0.0769231 0.0714286
 0.166667 0.142857 0.125 0.111111 0.0769231 0.0714286 0.0666667
 0.142857 0.125 0.111111 0.1 … 0.0714286 0.0666667 0.0625
 0.125 0.111111 0.1 0.0909091 0.0666667 0.0625 0.0588235
 0.111111 0.1 0.0909091 0.0833333 0.0625 0.0588235 0.0555556
 0.1 0.0909091 0.0833333 0.0769231 0.0588235 0.0555556 0.0526316
 0.0909091 0.0833333 0.0769231 0.0714286 0.0555556 0.0526316 0.05

 =

We take the simple right-hand side of all ones:

b_difficult [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] =

M_difficult = [1/(i+j) for i=1:nmax, j=1:nmax]1

b_difficult = ones(nmax)1

And solve the system using \ :

x_difficult

[-110.043, 5942.0, -1.02991e5, 841063.0, -3.78469e6, 1.00923e7, -1.63396e7, 1.57558e7, -8

 =

 0.000064 seconds (6 allocations: 1.203 KiB) 0.000064 seconds (6 allocations: 1.203 KiB)

Looks like a reasonable answer, but is it ?

Let's check against a computation using Julia's BigFloat number. This is usually between 10 and

100 times more expensive, so not useful for practical computations. But it will give us a reference

answer to much higher precision.

[-110.0, 5940.0, -102960.0, 840840.0, -3.78378e+06, 1.00901e+07, -1.63363e+07, 1.57529e+0

 0.007109 seconds (1.93 k allocations: 98.945 KiB, 98.17% compilation tim 0.007109 seconds (1.93 k allocations: 98.945 KiB, 98.17% compilation tim
e)e)

Looking at the second entry we already see some significant deviations in the standard Float64

answer, which actually get way worse as we increase nmax :

[0.0429388, -2.00331, 30.5705, -222.996, 906.665, -2205.02, 3281.26, -2927.26, 1437.35, -2

While for nmax = 5 the answer still kind of ok, the result of the standard \ -operator become

numerical garbage from nmax = 12 onwards.

The related questions we want to ask here are:

How does Julia's \ -operator work ?

How can we quantify when a linear system is more challenging to solve than another ?

Based on this: When can we trust the results we get ?

This is what we want to explore in this part of the course.

x_difficult = @time M_difficult \ b_difficult1

begin

M_big = [1/(big(i)+big(j)) for i=1:nmax, j=1:nmax]

x_big = @time M_big \ b_difficult

end

1

2

3

4

x_big - x_difficult1

Motivation: The \ (backslash) operator

For solving linear systems, we so far employed Julia's backslash \ operator. So let's find out what it

actually does under the hood. We take the problem

as an example. Normally we would now just do A \ b , so let's check what this calls

1 method for generic function \ from �[90mBase�[39m:

\(A::AbstractMatrix, B::AbstractVecOrMat) in LinearAlgebra at

/opt/hostedtoolcache/julia/1.11.5/x64/share/julia/stdlib/v1.11/LinearAlgebra/src/generic.jl:1118

Ok, so this calls into Julia's linear algebra library. The code is located here. Essentially it performs an

LU factorisation:

LU LinearAlgebra.LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
3×3 Matrix{Float64}:
 1.0 0.0 0.0
 -0.5 1.0 0.0
 -1.0 0.0 1.0
U factor:
3×3 Matrix{Float64}:
 -4.0 3.0 -1.0
 0.0 2.5 -0.5
 0.0 0.0 3.0

 =

which as we can see factorises the matrix into a lower triangular matrix and an upper

triangular matrix . More formally:

Definition: LU factorisation

Given a matrix find a lower triangular matrix and an upper triangular

matrix , such that

begin

A = Float64[-4 3 -1;

 2 1 0;

 4 -3 4]

b = [2, 4, -2]

end;

1

2

3

4

5

6

methods(\, (Matrix, Vector))1

LU = lu(A)1

file:///cache/build/tester-amdci5-12/julialang/julia-release-1-dot-11/usr/share/julia/stdlib/v1.11/LinearAlgebra/src/generic.jl
https://github.com/JuliaLang/julia/blob/8561cc3d68d3551a5728b40f782c244834fd3348/stdlib/LinearAlgebra/src/generic.jl#L1118

We can easily check that by multiplying and we indeed revover :

3×3 Matrix{Float64}:
 -4.0 3.0 -1.0
 2.0 1.0 0.0
 4.0 -3.0 4.0

3×3 Matrix{Float64}:
 0.0 0.0 0.0
 0.0 0.0 0.0
 0.0 0.0 0.0

Now we are a step closer to what happens, but why is this useful ?

Solving triangular systems

The factorisation into two triangular matrices is useful, because it is especially easy to solve a

system where the matrix is triangular. For example consider the lower triangular system

The first row of this system simply states , which is very easy to solve, namely

.

The second row states . However, is already known and can be inserted to

find .

Following the same idea the third row gives and the last row

.

In total we found

LU.L * LU.U1

A - LU.L * LU.U1

Generalising to an arbitrary 4x4 lower-rectangular matrix

this solution algorithm can be expressed as

We obtain

Algorithm 1: Forward substitution

Given a lower-triangular matrix a linear system can be solved by looping

from and computing

or in form of an implementation

forward_substitution (generic function with 1 method)

For upper triangular matrices we solve linear systems proceeds following the same idea –- just in

this case we start from the last row and not the first. For example a system

we solve by starting with and working our way forward to :

More formally this algorithm is called

Algorithm 2: Backward substitution

Given an upper-triangular matrix a linear system can be solved by looping

in reverse order and computing

function forward_substitution(L, b)

n = size(L, 1)

 x = zeros(n)

 x[1] = b[1] / L[1, 1]

 for i in 2:n

 row_sum = 0.0

for j in 1:i-1

row_sum += L[i, j] * x[j]

end

 x[i] = 1 / L[i, i] * (b[i] - row_sum)

 end

 x

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

or in code

backward_substitution (generic function with 1 method)

Based on our discussion we now understand why it is advantageous to perform an LU factorisation

when solving a linear system: For both the resulting triangular matrix as well as the matrix ,

simple solution algorithms are available. In summary we thus obtain

Algorithm 3: Solving linear systems by LU factorisation / Gaussian

elimination

We are given a matrix , a right-hand side . This algorithm computes the

solution to :

1. Factorise .

2. Solve for using forward substitution (Algorithm 1).

3. Solve for using backward substitution (Algorithm 2).

A few remarks are in order:

We have so far not discussed how to even compute the LU factorisation. As we will see in the

next section this step will actually be accomplished by the Gaussian elimination algorithm,

which probably already know from your linear algebra lectures.

A severe drawback of this naive algorithm is immediately apparent from our 4x4 example

problem, where (3) and (4) provide explicit solution expressions. If by any chance an element

function backward_substitution(U, b)

n = size(U, 1)

 x = zeros(n)

 x[n] = b[n] / U[n, n]

 for i in n-1:-1:1 # Note that this loop goes *backwards* n-1, n-2, ..., 1

 row_sum = 0.0

for j in i+1:n

row_sum += U[i, j] * x[j]

end

 x[i] = (b[i] - row_sum) / U[i, i]

 end

 x

end

1

2

3

4

5

6

7

8

9

10

11

12

13

 or happens to be zero, the algorithm cannot work. So one needs to come up with

ways around this. We will mention a few ideas in the section on pivoting.

Note, that steps 2. and 3. of the algorithm do not depend on the original matrix , but only

on the right hand side . In other words once the factorisation has been computed,

solving for different right hand sides only requires the execution of steps 2. and 3.

As we will see later, step 1. is the most expensive step. Therefore once has been factorised,

the cost for solving an arbitrary linear system involving is reduced as its factorised form

 can be used in its place.

LU factorisation

The missing piece in our discussion is how the LU factorisation can be computed. As it turns out this

is the Gaussian elimination algorithm, which you already learned in previous linear algebra classes.

Indeed, this algorithm reduces a matrix to upper triangular form –- now we just need to be careful

with the book-keeping to also extract the factor .

Algorithm 4: LU factorisation

Input:

Output: ,

for (algorithm steps)

for (Loop over rows)

for (Loop over columns)

 (modify to)

 (the loop above only runs until)

Example: Manual LU factorisation

We will run this algorithm manually for solving the linear system

That is for factorising the matrix . Before we start the loop over k , the matrix is empty and

 is just equal to :

k=1 (Step 1): In Gaussian elimination we would first zero out the 2nd and 3rd row of the

1st column of matrix . Here we do the same in a loop over rows starting at k+1 = 2 .

i = 2 (Row 2): To zero out the first entry of the second row by subtraction, we

need to multiply the first row with this factor:

The loop over columns now just uses this factor to update the second row by

subtracting times the first –- or equivalently adding 2 times the

first.

After this step we have:

where bold highlights the elements, that have changed.

i = 3 (Row 3): Here we zero out . We determine the factor

The loop over columns updates the third row by subtracting times the

first row.

After this step:

In loop over rows i only runs until n = 3 , so we are done with it.

k=2 (Step 2): Our goal is now to zero out the 2nd column in all rows below the diagonal.

We thus start another loop over rows, this time starting at k+1 = 3 :

i = 3 (Row 3): Our factor is now

After subtracting times the second row from the 3rd in the loop

over columns, i.e. we add 2nd and 3rd row, we get

Again we have reached the end of the loop over rows as i = n = 3 .

Since k = n-1 = 2 we also reached the end of the loop over k

Finally we set the missing to obtain the final result:

This is the LU factorisation of , which is easily verified by multiplying out the matrices:

Expand for an explict Gaussian elimination procedure, which works directly

working on the equations in x

We see that indeed the LU factorisation algorithm can be seen as a formalisation of the Gaussian

elimination procedure, reducing the matrix to triangular form .

Finally, for completeness, we provide a Julia implementation of LU factorisation (Algorithm 4):

factorise_lu (generic function with 1 method)

We stay with the example where we performed manual Gaussian elimination:

A_manual 3×3 Matrix{Float64}:
 2.0 1.0 0.0
 -4.0 3.0 -1.0
 4.0 -3.0 4.0

 =

With this slider you can stop factorise_lu after 1, 2 or 3 steps, checking that agrees with the steps

we computed manually. The matrices displayed below show the situation after k = nstep_lu_A in

Algorithm 4 has finished.

nstep_lu_A = 0

(U = 3×3 Matrix{Float64}:
2.0 1.0 0.0

, L = 3×3 Matrix{Float64}:
0.0 0.0 0.0

)

Running Algorithm 3

With this we have the missing ingredient to run Algorithm 3 and numerically solve a linear system.

function factorise_lu(A)

 n = size(A, 1)

 L = zeros(n, n) # Initialise L and U by zeros

 U = float(copy(A)) # Make a copy of A and ensure that all entries

 # are converted to floating-point numbers

 for k in 1:n-1 # Algorithm steps

L[k, k] = 1.0

for i in k+1:n # Loop over rows

L[i, k] = U[i, k] / U[k, k]

for j in k:n # Loop over columns

U[i, j] = U[i, j] - L[i, k] * U[k, j] # Update U in-place

end

end

 end

L[n, n] = 1.0 # Since the loop only runs until n-1

Return L and U using Julia datastructures to indicate

their special lower-triangular and upper-triangular form.

 return LowerTriangular(L), UpperTriangular(U)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A_manual = Float64[2 1 0;

 -4 3 -1;

 4 -3 4]

1

2

3

We stay with the problem

which we solved manually beforehand:

3×3 Matrix{Float64}:
 2.0 1.0 0.0
 -4.0 3.0 -1.0
 4.0 -3.0 4.0

b_manual [4, 2, -2] =

We follow Algorithm 3. First we need to find the LU factorisation:

(3×3 LowerTriangular{Float64, Matrix{Float64}}:
1.0 ⋅ ⋅

, 3×3 UpperTriangular{Float64, Matrix{Flo
2.0 1.0 0.0

which agrees what we obtained manually. Next we forward substitute:

z [4.0, 10.0, 0.0] =

Finally we backward substitute:

x [1.0, 2.0, 0.0] =

and check the result:

[0.0, 0.0, 0.0]

Hooray ! This suceeded!

Unfortunately this simple algorithm does not always work.

A_manual1

b_manual = [4, 2, -2]1

L, U = factorise_lu(A_manual)1

z = forward_substitution(L, b_manual)1

x = backward_substitution(U, z)1

A * x - b1

Consider the matrix:

D 3×3 Matrix{Int64}:
1 2 3

2 4 5

7 8 9

 =

If we apply our factorise_lu to this matrix we obtain:

3×3 LowerTriangular{Float64, Matrix{Float64}}:
 1.0 ⋅ ⋅
 2.0 1.0 ⋅
 7.0 -Inf 1.0

This -Inf is suspicious and points to a problem in the algorithm, which we will investigate in the

next section.

LU factorisation with pivoting

We stay with the problem we identified at the end of the previous section. That is factorising the

matrix

Applying Algorithm 4 the first step () will zero out the first column in the second and third

row by subtracting the 2 times (7 times) the first row from the second (third) row. When entering

the loop for this results in:

The first step of the iteration in Algorithm 4 will be to compute . However, the

element is zero as marked . We thus divide by zero, which is exactly what leads to the

introduction of a -Inf in the matrix L

let

L, U = factorise_lu(D)

L

end

1

2

3

4

To see this we use the slider to advance the algorithm step by step, the matrices below show the

situtation after the k = nstep_lu_D iteration has finished.

nstep_lu_D = 0

(U = 3×3 Matrix{Float64}:
1.0 2.0 3.0

, L = 3×3 Matrix{Float64}:
0.0 0.0 0.0

)

Due their central role in the Gaussian elimination algorithm the denominators in the

computation of the are usually referred to as pivots.

In summary we observe that from step and onwards our computations are numerical

garbage because we have used a pivot.

However, if instead of we factorise the permuted matrix

which is the matrix in which the last two rows are swapped, the algorithm goes through as

expected:

3×3 Matrix{Int64}:
 1 2 3

 7 8 9

 2 4 5

nstep_lu_PD = 0

(U = 3×3 Matrix{Float64}:
1.0 2.0 3.0

, L = 3×3 Matrix{Float64}:
0.0 0.0 0.0

)

Let us also check that the LU factorisation indeed yields P * U:

P * D1

3×3 Matrix{Float64}:
 0.0 0.0 0.0
 0.0 0.0 0.0
 0.0 0.0 0.0

We remark that the permutation matrix is given by ...

P 3×3 Matrix{Int64}:
1 0 0

0 0 1

0 1 0

 =

... and exactly achieves the task of swapping the last two rows, but leaving the rest of intact as

we saw above.

We notice that even though cannot be permuted it is possible to obtain an LU factorisation

 if we additionally allow the freedom to cleverly permute the rows of .

This is in fact a general result:

Theorem 1

Every non-singular matrix admits a factorisation

where is lower-triangular, upper-triangular and is a permutation matrix.

That is to say, that while in general factorising a matrix can fail, it always suceeds for non-

singular matrices if we give ourselves the freedom to permute the rows of .

Finding a suitable can be achieved by a small modification of Algorithm 4. Essentially this

modification boils down to selecting a permutation of rows of the factorised matrix on the fly, such

that the pivots of the permuted matrix are always nonzero. The precise way how this is

achieved is called pivoting strategy and the details are beyond the scope of this course. The

interested reader can find some discussion in the optional subsection below.

let

L, U = factorise_lu(P * D)

L * U - P * D # show that L * U = P * D

end

1

2

3

4

P = [1 0 0;

 0 0 1;

 0 1 0]

1

2

3

Note, that Julia's implementation of LU factorisation (the lu Julia function) does indeed implement

one such pivoting strategies, such that it works flawlessly on the problematic matrix D :

Notably beyond the factors and

3×3 Matrix{Float64}:
 1.0 0.0 0.0
 0.285714 1.0 0.0
 0.142857 0.5 1.0

3×3 Matrix{Float64}:
 7.0 8.0 9.0
 0.0 1.71429 2.42857
 0.0 0.0 0.5

this factorisation object also contains the employed permutation matrix :

3×3 Matrix{Float64}:
 0.0 0.0 1.0
 0.0 1.0 0.0
 1.0 0.0 0.0

Such that as expected :

3×3 Matrix{Float64}:
 0.0 0.0 0.0
 0.0 0.0 0.0
 0.0 0.0 0.0

However, we notice that Julia's pivoting strategy did end up with a different permutation than our

example.

Solving linear systems based on LU factorisation

The result of Theorem 1 is clearly that a factorisation can always be achieved if the

linear system has a unique solution, that is that is non-singular. To employ pivoted LU

facD = lu(D);1

facD.L1

facD.U1

facD.P1

facD.L * facD.U - facD.P * D1

factorisation to solve this linear system we note that we can always multiply both left and right

hand sides by , therefore:

which leads to the following algorithm:

Algorithm 5: Solving linear systems with pivoted LU factorisation

Given a matrix , a right-hand side the linear system can be solved

for as follows:

1. Factorise , that is obtain , and (The lu Julia function).

2. Solve for using forward substitution.

3. Solve for using backward substitution.

When we use Julia's backslash \ -operator, effectively this Algorithm 5 is executed under the hood.

Let us understand this algorithm by executing the steps manually for solving the problem

We already defined defined and before:

3×3 Matrix{Int64}:
 1 2 3

 2 4 5

 7 8 9

[2, 4, -2]

Step 1: Perform LU factorisation of :

(P = 3×3 Matrix{Float64}:
0.0 0.0 1.0

, L = 3×3 Matrix{Float64}:
1.0 0.0 0.0

, U = 3×3 Matrix{Float64}:
7.0 8.0 9.0

)

D1

b1

begin

fac = lu(D)

(; fac.P, fac.L, fac.U)

end

1

2

3

4

Step 2: Compute by forward substitution of wrt.

zD [-2.0, 4.57143, 0.0] =

Step 3: Backward-substitute wrt. :

xD [-3.33333, 2.66667, 0.0] =

Verify result: This solves the problem as desired:

[0.0, 0.0, 0.0]

Optional: More details on pivoting

In this section we provide some details of one common form of pivoting from LU factorisation,

namely row pivoting.

In this approach we allow ourselves some flexibility in Algorithm 4 by allowing ourselves to change

the order in the last few rows and thus choose the pivot amongst the entries with in each

step . The resulting change of row order will then define the permutation matrix we employed

in our above discussion.

As a guiding example we again consider the problem of factorising

where we saw previously non-pivoted LU factorisation to fail. Without any pivoting / row swapping

after the first LU factorisation step (i.e when will start) the situation is

Looking at this it seems very reasonable to just swap the second and the third column in and

thus move the to become the new pivot. For consistency we not only need to swap , but also

zD = forward_substitution(fac.L, fac.P * b)1

xD = backward_substitution(fac.U, zD)1

D * xD - b1

. This gives us

If we continue the algorithm now, the sits in the position of the pivot and the division

by zero is avoided.

In fact in this particular case the matrix is already in upper triangular form after step , such

that in the step nothing will change, in fact we will just get . After we thus

obtain from our algorithm:

Due to the additional row permutation we performed multiplying out will not yield , but a

matrix where the second and third rows of are swapped:

This is not surprising as with pivoting we expect to get , so our missing piece is to find

the permutation matrix .

Here the correct matrix is

as we saw before. We can now understand how this matrix has been constructed: Namely if we take

the identity matrix and perform exactly the same row permutations as during the pivoted LU

factorisation. That is we swap the second and third row. With this matrix we can easily check that

If we thus extend our factorise_lu function to additionally perform such pivoting permutations,

the Gaussian elimination algorithm would always terminate successfully.

But pivoting brings additional opportunities. As it turns out numerical stability of LU factorisation

can improve if one permuts the rows of not only if a pivot is zero, but in fact during each

iteration , ensuring that the pivot is as large as possible.

In other words in the -th step of LU factorisation we always exchange row with the row where

satisfies

The appropriate swaps are tracked and returned as well.

In practical algorithms instead of returning a permutation matrix (which requries to store

elements) it is usually more convenient to store a permutation vector , which has only elements.

This vector tracks the indices of the rows of in the order they are used as pivots. In other words if

idmx 4×4 Matrix{Float64}:
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0

 =

is the identity matrix and

perm [1, 3, 2, 4] =

the permutation vector, then

4×4 Matrix{Float64}:
 1.0 0.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 0.0 1.0

is the permutation matrix.

The code below presents an implementation of row-pivoted LU factorisation.

idmx = diagm(ones(4))1

perm = [1, 3, 2, 4]1

idmx[perm, :]1

factorise_lu_pivot (generic function with 1 method)

We check our implementation of pivoted LU factorisation against Julia's RowMaximum pivoting

strategy, which implements the same algorithm.

reference LinearAlgebra.LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
3×3 Matrix{Float64}:
 1.0 0.0 0.0
 0.285714 1.0 0.0
 0.142857 0.5 1.0
U factor:
3×3 Matrix{Float64}:
 7.0 8.0 9.0
 0.0 1.71429 2.42857
 0.0 0.0 0.5

 =

The resulting L, U and pivot vector values are:

function factorise_lu_pivot(A)

 n = size(A, 1)

 L = zeros(n, n)

U = zeros(n, n)

p = fill(0, n)

 Ak = float(copy(A)) # Make a copy of A and ensure that all entries
 # are converted to floating-point numbers

 for k in 1:n-1 # Algorithm steps

p[k] = argmax(abs.(Ak[:, k])) # Find row with maximal pivot

U[k, :] = Ak[p[k], :] # Copy pivot row to U, use U now instead of Ak,

 # which is again updated in-place

for i in 1:n # Row loop: Note the full range as any row may

 # be non-zero

L[i, k] = Ak[i, k] / U[k, k]

for j = 1:n # Column loop: Again full range
Ak[i, j] = Ak[i, j] - L[i, k] * U[k, j]

end

end

 end

p[n] = argmax(abs.(Ak[:, n]))

U[n, n] = Ak[p[n], n]

L[:, n] = Ak[:, n] / U[n, n]

To simplify assembling L we so far kept the rows in the same order

as in A. To make the matrix upper triangular we also apply the column
permutation p before returning the results.

(; L=LowerTriangular(L[p, :]), U=UpperTriangular(U), p=p)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

reference = lu(D, RowMaximum())1

3×3 Matrix{Float64}:
 1.0 0.0 0.0
 0.285714 1.0 0.0
 0.142857 0.5 1.0

3×3 Matrix{Float64}:
 7.0 8.0 9.0
 0.0 1.71429 2.42857
 0.0 0.0 0.5

[3, 2, 1]

In contrast we obtain:

3×3 LowerTriangular{Float64, Matrix{Float64}}:
 1.0 ⋅ ⋅
 0.285714 1.0 ⋅
 0.142857 0.5 1.0

3×3 UpperTriangular{Float64, Matrix{Float64}}:
 7.0 8.0 9.0
 ⋅ 1.71429 2.42857
 ⋅ ⋅ 0.5

[3, 2, 1]

Memory usage and fill-in

Sparse matrices
The matrices and linear systems one encounters in physics and engineering applications not

infrequently reach huge sizes. For example in the numerical solution of partial differential

equations using finite difference or finite element methods the vector of unknowns frequently has

a dimension on the order of .

Taking thus as an example this implies that matrices, i.e. entities from , hold around

 elements. In double precision, i.e. -bit numbers, each entry requires bytes. As a result

storing all elements of such a matrix explicitly in memory reqires

fac.L1

fac.U1

fac.p1

factorise_lu_pivot(D).L1

factorise_lu_pivot(D).U1

factorise_lu_pivot(D).p1

8000000000000

bytes or

7.275957614183426

tibibyes of storage. This is a challenge even for modern compute clusters, where typically a node

has around GiB. Laptops nowadays feature around GiB, so would be completely out of the

question to solve such problems.

However, in many applications the arising matrices are sparse, meaning that they contain a large

number of zero elements, which do not need to be stored. Let us discuss a few examples.

Definition: Full matrix

A matrix is called full if the number of non-zero elements is at the order of . For

such matrices almost all elements are non-zero and need to be stored.

Full matrices are the "standard case" and for them memory constraints usually set the limit of the

size of problems, which can be tackled. For example an GiB memory laptop can store around

 double-precision numbers, which means that linear problems with more than around

 unknows cannot be treated.

Definition: Sparse matrix

A matrix is called sparse if the number of non-zero elements is at the order of .

If we know which elements are zero, we can thus save memory by only storing those elements,

which are non-zero. For this purpose the SparseArrays Julia package implements many primitives

for working with sparse arrays.

This includes, generating random sparse arrays:

10^12 * 81

10^12 * 8 / 1024^4 # TiB1

https://docs.julialang.org/en/v1/stdlib/SparseArrays/

Asp 100×100 SparseMatrixCSC{Float64, Int64} with 1457 stored entries:
⎡⡫⠤⣦⢬⢑⡵⠠⡮⢄⠐⡀⡰⡃⣼⢗⠠⠐⢖⡆⣵⣬⡐⠔⢨⡢⠀⢡⠄⎤
⎢⠊⡀⠉⢊⠏⢈⡔⡢⡽⢏⢳⡟⠀⣄⡁⡊⣅⣃⡮⣄⠘⣈⠢⢦⢩⠀⢭⣢⎥
⎢⠑⡙⡛⡲⡂⠐⣘⡆⣇⡈⠀⡐⠘⢜⠐⡸⠉⡑⣰⡫⠀⠁⡙⣘⢠⠊⢔⠹⎥
⎢⠸⢰⢼⣾⠠⠜⠈⢋⠂⠏⠕⣫⡤⣧⣙⠒⡩⠁⠙⢡⠂⠭⠠⠉⠄⠐⠈⣤⎥
⎢⠺⢉⠞⣆⢉⡣⠟⡄⡈⢳⠀⢋⠆⠼⠭⠠⢣⠉⢎⡏⢎⢾⡕⠱⡆⢖⠂⣉⎥
⎢⢤⢬⡱⢚⠐⣪⣊⡀⡪⢒⢈⠄⡇⢖⣲⡥⡴⠇⣂⣬⡢⠡⢄⣞⠸⢒⣰⡀⎥
⎢⣀⠐⣀⣎⣌⡰⡔⠠⣍⠫⡁⢰⠱⣝⡐⣀⠄⠀⣨⠤⠢⠁⡀⣡⣩⠠⢔⠉⎥
⎢⢐⢁⠅⣒⠇⣘⡚⡚⡚⣩⢋⢸⠃⣅⣱⢤⢲⠁⠑⠒⠨⠍⣃⣂⠑⠚⣌⠑⎥
⎢⢡⠠⠉⣆⠥⢌⠔⡖⠔⠁⠾⢇⢃⣣⠀⡰⠲⠀⠙⠵⠔⠈⡃⠎⡁⠸⡗⠏⎥
⎢⢸⢘⠙⠷⠸⢃⡸⡉⣓⣊⠠⠭⡖⠃⣧⡇⡌⠋⣣⡱⢽⡅⠼⢌⡔⠊⣄⣑⎥
⎢⢀⢔⢑⢒⡽⢴⠰⡶⢢⡔⣢⣴⡤⠂⣮⡴⠤⢌⠆⡢⢈⠴⢁⠚⡄⠛⢒⣰⎥
⎢⡈⣱⣌⢤⢭⠜⠮⢄⡝⡉⢳⡬⠠⡤⡃⢂⣉⡂⢌⢐⢤⢉⠠⣎⡹⢠⠠⠃⎥
⎢⡬⡲⡃⣇⣴⣚⢐⢌⠈⣅⢱⢹⢓⢚⣃⢐⡺⠌⢾⡦⡈⢡⣘⢓⢘⣐⡌⣁⎥
⎣⠤⡱⠾⢊⡴⢠⠼⠪⠘⡐⠦⠝⡜⠖⠈⡀⠩⠈⠟⡦⠸⠔⠁⢭⡍⠴⣦⡄⎦

 =

or simply sparsifying a dense array using the sparse function, which converts a full matrix to a

sparse matrix by dropping the explicit storage of all zero entries.

M 4×4 Matrix{Int64}:
 1 0 0 5

-2 0 1 0
 0 0 6 0

 0 1 0 -1

 =

4×4 SparseMatrixCSC{Int64, Int64} with 7 stored entries:
 1 ⋅ ⋅ 5

 -2 ⋅ 1 ⋅
 ⋅ ⋅ 6 ⋅

 ⋅ 1 ⋅ -1

Using the SparseArray data structure from SparseArrays consistently allows to fully exploit

sparsity when solving a problem. As a result the storage costs scale only as . With our laptop

of 32 GiB memory we can thus tackle problems with around unknowns –- much better

than the we found when using full matrices.

Finally we introduce a special kind of sparse matrix:

Definition: Band matrix

A matrix is called a band matrix with bandwidth if when .

Every line of the matrix contains at most non-zero elements and the number of non-

Asp = sprand(100, 100, 0.15)1

M = [1 0 0 5;

 -2 0 1 0;

 0 0 6 0;

 0 1 0 -1]

1

2

3

4

sparse(M)1

zeros thus scales as .

An example for a banded matrix with bandwidth is:

band 105×105 SparseMatrixCSC{Float64, Int64} with 817 stored entries:
⎡⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⎦

 =

Memory: LU factorisation of full matrices
Since the amount of available memory can put hard constraints on the size of linear systems which

can be solved, we now want to investigate the memory requirement of LU factorisation .

If is a full matrix, then we know that and are triangular, thus L and U contain less non-zero

elements or more zero elements than itself and thus require together as much memory to be

stored in memory as itself.

Memory: LU factorisation of sparse matrices
Let's contrast this with the sparse matrices we have considered above. First the random sparse

matrix:

100×100 SparseMatrixCSC{Float64, Int64} with 1457 stored entries:
⎡⡫⠤⣦⢬⢑⡵⠠⡮⢄⠐⡀⡰⡃⣼⢗⠠⠐⢖⡆⣵⣬⡐⠔⢨⡢⠀⢡⠄⎤
⎢⠊⡀⠉⢊⠏⢈⡔⡢⡽⢏⢳⡟⠀⣄⡁⡊⣅⣃⡮⣄⠘⣈⠢⢦⢩⠀⢭⣢⎥
⎢⠑⡙⡛⡲⡂⠐⣘⡆⣇⡈⠀⡐⠘⢜⠐⡸⠉⡑⣰⡫⠀⠁⡙⣘⢠⠊⢔⠹⎥
⎢⠸⢰⢼⣾⠠⠜⠈⢋⠂⠏⠕⣫⡤⣧⣙⠒⡩⠁⠙⢡⠂⠭⠠⠉⠄⠐⠈⣤⎥
⎢⠺⢉⠞⣆⢉⡣⠟⡄⡈⢳⠀⢋⠆⠼⠭⠠⢣⠉⢎⡏⢎⢾⡕⠱⡆⢖⠂⣉⎥
⎢⢤⢬⡱⢚⠐⣪⣊⡀⡪⢒⢈⠄⡇⢖⣲⡥⡴⠇⣂⣬⡢⠡⢄⣞⠸⢒⣰⡀⎥
⎢⣀⠐⣀⣎⣌⡰⡔⠠⣍⠫⡁⢰⠱⣝⡐⣀⠄⠀⣨⠤⠢⠁⡀⣡⣩⠠⢔⠉⎥
⎢⢐⢁⠅⣒⠇⣘⡚⡚⡚⣩⢋⢸⠃⣅⣱⢤⢲⠁⠑⠒⠨⠍⣃⣂⠑⠚⣌⠑⎥
⎢⢡⠠⠉⣆⠥⢌⠔⡖⠔⠁⠾⢇⢃⣣⠀⡰⠲⠀⠙⠵⠔⠈⡃⠎⡁⠸⡗⠏⎥
⎢⢸⢘⠙⠷⠸⢃⡸⡉⣓⣊⠠⠭⡖⠃⣧⡇⡌⠋⣣⡱⢽⡅⠼⢌⡔⠊⣄⣑⎥
⎢⢀⢔⢑⢒⡽⢴⠰⡶⢢⡔⣢⣴⡤⠂⣮⡴⠤⢌⠆⡢⢈⠴⢁⠚⡄⠛⢒⣰⎥
⎢⡈⣱⣌⢤⢭⠜⠮⢄⡝⡉⢳⡬⠠⡤⡃⢂⣉⡂⢌⢐⢤⢉⠠⣎⡹⢠⠠⠃⎥
⎢⡬⡲⡃⣇⣴⣚⢐⢌⠈⣅⢱⢹⢓⢚⣃⢐⡺⠌⢾⡦⡈⢡⣘⢓⢘⣐⡌⣁⎥
⎣⠤⡱⠾⢊⡴⢠⠼⠪⠘⡐⠦⠝⡜⠖⠈⡀⠩⠈⠟⡦⠸⠔⠁⢭⡍⠴⣦⡄⎦

Asp1

100×100 SparseMatrixCSC{Float64, Int64} with 3167 stored entries:
⎡⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠨⠠⠀⡱⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⡀⠰⠀⠈⠮⠈⢵⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠨⢀⠦⣭⣿⣬⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⣰⢀⡂⣽⣿⢰⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⣤⣸⢯⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⢂⣒⢀⣐⣛⣚⣛⣛⣛⣛⣛⣛⣛⣛⣓⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠠⠶⠄⠰⠶⠶⠶⠶⠿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠼⠀⢨⣭⢲⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠙⠴⠐⢣⣼⠾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⎥
⎢⠠⢖⢀⠥⣻⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⎥
⎢⠓⣋⣦⡚⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⎥
⎣⠘⠽⡇⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⎦

Storing both L and U thus requires a total number of

6022

non-zero elements, which is about 4.1 times as much as the original matrix !

Now the banded matrix:

105×105 SparseMatrixCSC{Float64, Int64} with 817 stored entries:
⎡⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣦⡀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⎦

lu(Asp).L # U looks similar1

nnz(lu(Asp).L) + nnz(lu(Asp).U)1

band1

105×105 SparseMatrixCSC{Float64, Int64} with 611 stored entries:
⎡⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⢾⣷⣄⎦

At least the banded structure is kept, but still we require

1222

nonzeros, which is about 1.5 times than the original in this case.

In both cases storing the and the factors require more non-zero elements than the original

matrix. This phenomenon is usually referred to as fill in.

In particular for the sparse matrix Asp LU factorisation did not preserve the structure at all. In

contrast it almost resulted in a full matrix in the lower right corner of the . For this looks

exactly the same. In fact one can show that in general even for sparse matrices the memory usage

of LU factorisation is . Therefore while one may be able to store a sparse matrix with a

huge size in memory (due to the memory cost), one may actually run out of memory while

computing the factorisation.

Let us add that for banded matrices the situation is slightly better as one can show that in this case

the fill-in takes place at most inside the band. As a result the memory requirement stays at .

Overview of LU factorisation memory cost

We summarise the cost of LU factorisation in a table:

type of matrix memory usage comment

full matrix

general sparse matrix fill-in

lu(band).L # U looks similar1

nnz(lu(band).L) + nnz(lu(band).U)1

banded matrix, band width stays block-diagonal

Computational cost of LU factorisation

In this section we want to investigate how long it will take a computer to perform LU factorisation

on a large matrix.

Modern laptop computers nowadays have a clock frequency of a few Gigahertz (GHz). This means

they are able to perform about operations per second, where for simplicity we assume that

"one operation" is an elementary addition, multiplication, division and so on. If we can determine

how many such operations are needed to perform LU factorisation we can estimate the

computational cost.

Before we look at the LU algorithm (Algorithm 4) we first understand a few simpler cases from

linear algebra:

Scalar product
Given two vectors consider computing the scalar product

which in code is achieved as

scalar_product (generic function with 1 method)

In the loop for each iteration we require multiplication and addition. In total the

scalar_product function therefore requires multiplications and additions. The number of

elementary operations is thus . We say the computational cost is (i.e. on the order of or

linear in).

If we take the dimensionality the number of operations is . On a 1 GHz

computer (with operations per second) this therefore takes about seconds ... hardly

function scalar_product(x, y)

result = 0.0

for i in 1:length(x)

result = result + x[i] * y[i]

end

result

end

1

2

3

4

5

6

7

noticable.

Matrix-vector product
Given a matrix and a vector the matrix-vector product is computed as

or in code

matrix_vector_product (generic function with 1 method)

In the innermost loop we observe again that we require addition and multiplication per

iteration. This instruction is performed once for each combination of and , so we look at the

limits of each of the nested loops. The loop over runs over values (the number of rows of) and

the loop over over values as well (the number of columns of). In total the inner most

instruction (*) is thus run times, each times costing operations. The total cost is thus .

For our case with and a 1 GHZ computer we thus now need

, which is again a rather short time.

Expert information: What about the allocation in `(#)` ?

Overview of computational cost

For vectors and matrices the computational cost is

operation cost

dot product

matriv-vector product

function matrix_vector_product(A, x)

y = zeros(size(A, 1)) # Create a vector of zeros (#)

for i in 1:size(A, 1)

for j in 1:size(A, 2)

y[i] = y[i] + A[i, j] * x[j] # (*)

end

end

result

end

1

2

3

4

5

6

7

8

9

10

matrix-matrix multiplication

Finally a few rough guidelines:

General guideline to estimate computational cost

1. Determine the instructions at the innermost (most deeply nested) loop level

2. Find the most expensive of these instructions and determine its cost in terms of number of

operations

3. Determine the ranges of all loops in terms of the dimensionality of your problem.

Typically for each loop level this is

4. Multiply the result of 2. and all index ranges of 3 to get the total scaling. Typically for a

single loop nesting the cost is for a doubly nested loop and so on.

Example Matrix-matrix multiplication

Let us code up an algorithm how to compute the product of two matrices and

analyse its complexity.

matmul (generic function with 1 method)

LU factorisation
We revisit Algorithm 4:

Algorithm 4: LU factorisation

Input:

Output: ,

for (algorithm steps)

function matmul(A, B)

C = zeros(size(A, 1), size(B, 2))

loops ...

C

end

1

2

3

4

5

6

7

for (Loop over rows)

for (Loop over columns)

 (modify to)

 (the loop above only runs until)

We notice that the instruction at the innermost loop level is

which costs again addition and multiplication and which is executed once for each tuple

. In the worst case is takes elements, also elements (assume) and

again in its worst case takes elements. In total the cost is thus .

For our case with and a 1 GHz computer the computation thus needs approximately

, which starts to be a noticable amount of time. If we even consider all

of a sudden it takes , which is about minutes. For large matrices the cost of computing LU

factorisation can thus become important !

For banded matrices the computational scaling is a little improved. E.g. consider LU factorisation

on a banded matrix with band width . Then bothe the loop over (row loop) as well as the loop

over (column loop) in the LU factorisation algorithm can be truncated and at most run over

elements. As a result the computational cost at worst becomes which for a small band

width (i.e.) is substantially less than .

Overview of LU factorisation computational cost and memory cost

We summarise the cost of LU factorisation in a table:

type of matrix computational cost memory usage

full matrix

general sparse matrix

banded matrix, band width

Numerical stability

To close off our discussion of Gaussian elimination we consider the question of its numerical

stability, i.e. how is the result of LU factorisation effected by small round-off errors introduced

when performing a calculation on a computer with its finite precision to represent numbers.

In this chapter our goal has been to solve a linear system of the form

where we are given a matrix as well as a right-hand side and we wish to solve

for We will later refer to this system as the exact system.

Since the computer in general is unable to represent the matrix and right-hand side exactly in

finite-precision floating point arithmetic, even just providing this problem to a computer will

usually be associated with making a small error: in practice the computer only ever sees the

perturbed system

where is an approximation to , is an approximation to . It will thus yield the solution by

solving the perturbed system instead of providing .

To understand the numerical stability when solving linear systems our goal is thus to understand

how far the solution –- obtained on a computer –- differs from –- the solution to (5), the true

linear system we want to solve.

To provide a motivation why this type of analysis matters in practice, we first consider the

following example:

Example: Rounding error in a 2x2 system

Consider the exact linear system

with solution and the perturbed linear system

where only the first component of the right-hand side has been perturbed by . This

second system has solution . The second component of this solution is thus

completely wrong!

The small perturbation of , which may readily occurr just by inputing the data to a

computer, can already have a very noticable effect on the solution and in fact render the

solution we obtain from our our computation (i.e.) rather far from the answer we are actually

after (i.e.).

In standard floating-point arithmetic the relative error in representing any number is around

. Mathematically we can find the following relationships between the elements of and as

well as and , respectively:

However, to simplify the treatment in this course we will not attempt to discuss the effect of such

relative errors on the numerical stability in full generality. Much rather we will employ the error

model:

Error model in this notebook

Between the exact system and the perturbed system we will assume the foollowing relationship

In other words we assume that the system matrix is exactly represented on the computer and

that round-off errors only affect the right-hand side . Moreover we assume that the relative error

for all elements of is identical to .

For standard double-precision floating-point numbers we have .

For an alternative and more detailed discussion see also chapter 2.8 of Driscoll, Brown:

Fundamentals of Numerical Computation.

Matrix condition numbers and stability result
To analyse the error mathematically, we first have to introduce some notation.

https://tobydriscoll.net/fnc-julia/linsys/condition-number.html

Recall that for a vector its Euclidean norm is .

We define the following:

Definition: Relative error of linear systems

The relative error in , the solution to the perturbed system (6), is the quantity

where is the exact solution, i.e. the solution to the exact linear system (5) one actually wanted

to solve.

We further need a generalisation of norms to matrices:

Definition: Matrix norm

Given a real matrix (not necessarily square), we define the matrix norm of as

The previous definition implies in particular that

With this definitions in place we begin our analysis for (5) and (6) where . From the

definition of the exact and perturbed linear systems

we obtain by subtraction and since is invertible

Using (7) we therefore have

Furthermore we have from applying (7) to :

such that with the above result we can bound the relative error as

From as stability analysis point of view the quantity thus relates the relative

error in the right-hand side (input quantity) to the relative error in the solution (output quantity).

It is thus the condition number for a linear system:

Definition: Condition number of a linear system

Given a linear system with an invertible system matrix its condition

number is defined as

Due to the importance of solving linear systems in linear algebra one usually calls also

the condition number of the matrix .

But notably (8) can be interpreted even more generally as the way it the solution of linear systems

are changed as we change the right-hand side as is summarised below:

Theorem 2: Change of solution when changing the right-hand side

Given a linear system , which we solve for and a related linear system

which we solve for , then the two solutions are related as

In this notebook we employed an error model where storing on the computer (which leads to)

introduces a small relative error:

This enables to simplify the expression of the absolute error of right-hand side:

which leads to the following result:

Theorem 3: Stability of solving linear systems

Given a linear system and the solution to a perturbed linear system ,

where for , then

This inequality shows that the condition number of the matrix plays the role of amplifying the

round-off error introduced by the floating-point representation of the right-hand side.

Since for standard double-precision floating-point numbers we have , this means that

condition numbers of lead to a relative error of , i.e. error –- all precision is lost. In

general condition numbers above start to become problematic as in this case the relative error

in the solution is at most , i.e. roughly speaking no more than digits.

Numerically computing the condition number. In Julia code the condition number of a matrix is

computed using the cond function. It effectively uses the above formulas for its computation.

For example for our running example we obtain:

2.0000000000000004e16

Notice, that this is , which is a huge number !

let

A = [1 1e-16;

 1 0]

κ = cond(A)

end

1

2

3

4

5

Rounding error in a 2x2 system (continued)

Using Theorem 3 we can finally understand the behaviour we observe in our example.

Previously we found that a small perturbation in one of the elements of the

right hand side, introduces a change in the solution from to

. This is a relative error of

Note that in this example just like for the case of a rounding error in the right-hand

side.

As we computed above

such that this large relative error is explained by the large condition number of this matrix.

Computing condition numbers
Using the cond function of Julia enables us to easily compute condition numbers in practice.

However, the expression is not extremly handy to provide a good intuition

for what the condition number actually means or how it varies as the matrix is changed.

In this section we thus discuss a few standard techniques how to compute condition numbers of

matrices. These techniques are in fact exactly the algorithms that cond uses under the hood to do

its computation.

First we need some notation:

Definition: Minimal and maximal eigenvalues

Given a diagonalisable matrix we denote by the largest eigenvalue of

and by the smallest eigenvalue of , i.e.

where for are the eigenvalues of .

⚠ TODO ⚠

Introduce and consistently use instead of

everywhere ... as this is the thing that matters in our arguments. Similarly

.

It turns out that the minimal and maximal eigenvalues provide a convenient way to compute

matrix norms:

Lemma 4: Computing matrix norms

For any matrix

If is moreover square and invertible, then

Based on this we can deduce a few useful formulas for computing condition numbers. We start with

the general expression:

Corollary 5: Condition number for invertible matrices

If is invertible the condition number can be computed as

Furthemore if is invertible and symmetric then . As a result we observe that

As a result

If is both symmetric and positive definite (i.e. all eigenvalues are strictly positive), then

we can drop the moduli in the above expression and obtain:

Lemma 6: Condition number of symmetric, positive-definite matrices

If is symmetric and positive definite, then

Rounding error in a 2x2 system (continued)

As an example we now compute the condition number of the matrix analytically

Recall that the value computed by Julia's cond function was roughly .

This matrix is not symmetric and we therefore use the expression

which requires us to compute the eigenvalues of . We note

and

such that the two eigenvalues of are

We conclude that

therefore

–- i.e. the same huge number we obtained before.

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html

