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Interpolation
In this chapter we will return to one of the problems we already briefly discussed in the

introductory lecture, namely:

Definition: Interpolation problem

Suppose we are given data  with , where the  are all distinct. Find a

function  such that .

The function  is usually called the interpolant or interpolating function.

One can also consider the task of finding such an interpolating function  as one simple example

for a data-driven method:

Let us assume the data  originates from a complex statistical process (e.g. a lab

experiment or an involved simulation)

Having observed  observed data points  we thus want to

obtain a cheaper model to predict a measurement  for a so far unseed .

By the means of interpolation we effectively train such a model, namely the interpolant .

Based on the interpolated  we can make a prediction of the data point  as

.

Data-driven methods

Of course we have not really discussed precisely how to obtain such an . Indeed the interpolation

condition  is rather weak and in practice and leaves considerable freedom:

Show polynomial interpolant: 

Show piecewise linear interpolant: 

Show periodic interpolant: 



Which of the above interpolants is the best is strongly dependent on the scientific context, for

example:

If we know our data to have some periodicity, than the periodic interpolant (purple) may be

better.

If we need differentiability, the piecewise linear interpolant (green) may not be a good

choice.

Therefore, in practical applications the quality of the fit usually depends on how well our method to

construct  agrees with the behaviour of the data itself.

The typical ansatz for an interpolation problem is to take  from a family of suitable functions (e.g.

polynomials, trigonometric functions etc), which form a vector space. If  is a basis for

for this vector space, then we can write  as the linear combination

of  basis functions. Employing further the condition that  needs to pass through the data points,

i.e.  for all , then we get  equations



which is a system of  equations with  unknowns. In matrix form we can write

where

Note: The number of basis functions and the number of data points does not need to agree. We will

consider such more general regression problems later.

Polynomial interpolation

We start with one of the simplest forms of interpolation: Namely fitting polynomials through the

given data.

Let us come back to our earlier problem of finding an interpolating function  for the given

temperature-dependent reaction rates.

Note, that compared to the pathological example of the introduction, we start with a slightly

simpler case:

data = """

# Temperature(K)  Rate(1/s)

  250.0           1.65657

  260.0           1.70327

  270.0           1.74472

  280.0           1.78110

  290.0           1.81259

  300.0           1.83940

  310.0           1.86171

  320.0           1.87971
  330.0           1.89358

  340.0           1.90352

  350.0           1.90968

""";
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Monomial basis
Let us first consider the case of polynomial interpolation: given  data points  up to

 we want to find a -th degree polynomial

which is an interpolating function, i.e. satisfies  for all . Fundamental

results from algebra ensure that such a polynomial of degree , which goes through all  data

points can always be found. Moreover this polynomial (thus its coefficients ) is uniquely defined

by the data.

Indexing conventions: Starting at 0 or 1

begin

lines = split(data, "\n")

temperature = [parse(Float64, split(line)[1]) for line in lines[2:end-1]]

rate        = [parse(Float64, split(line)[2]) for line in lines[2:end-1]]

end;
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scatter(temperature, rate; label="data", xlabel="temperature", ylabel="rate")1



Note that in the definition of the polynomial (Equation (3)) the sum starts now from 

whereas in equation (1) it started from .

When discussing numerical methods (such as here interpolations) it is sometimes more

convenient to start indexing from  and sometimes to start from . Please be aware of this and

read sums in this notebook carefully. Occasionally we use color to highlight the start of a sum

explicitly.

To find this polynomial a natural idea is thus to employ the monomials  directly as

the basis for our interpolation:

Definition: Monomial basis

The basis of  monomials are the functions .

Employing these in equations (1) and (2) to perform our interpolation leads to the linear system in

the  unknowns 

where the  matrix  is called the Vandermonde matrix. Assuming the data

points  to be distinct, we know that only one interpolating polynomial exists. The linear

system (4) has therefore exactly one solution and the matrix  is thus always invertible,

.

Let's see how this method performs on our data. We demonstrate the case for n_data_monomial =

3, thus a polynomial degree of 2

First we build the Vandermonde matrix:



3×3 Matrix{Float64}:
 1.0  250.0  62500.0
 1.0  260.0  67600.0
 1.0  270.0  72900.0

Then we solve the linear system to find the polynomial coefficients:

c [-1.21718, 0.0180575, -2.625e-5] = 

... and plot the result:

begin

# We wish to find an interpolating polynomial for the mapping

# temperature to reaction rate.

x = temperature[1:n_data_monomial]

y = rate[1:n_data_monomial]

V = zeros(n_data_monomial, n_data_monomial)

for j in 1:n_data_monomial

for i in 1:n_data_monomial

V[i, j] = x[i] ^ (j-1)

end

end

V

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

c = V \ y  # Solve V * c = y1



Use the Slider to regulate how many of the data points are included in the interpolation.

n_data_monomial =  

We see as we use more and more data points, eventually the full data range is well-represented by

interpolating polynomial.

3

A word of warning: Vandermonde matrices are an example of what is known as a badly conditioned

matrix, that is a matrix where small numerical errors (such as rounding errors due to the finite-

precision number format used by the computer) can amplify and lead to very inaccurate solutions.

Therefore this method starts to be come very unreliable for  larger than a few tens.

We will explore a better method in the next section.

Lagrange basis
While the monomial basis seemed natural, the fact that the -th degree interpolating polynomial

is uniquely determined by the  data points allows us to use any polynomial basis to find it.

Both a more practical as well as a numerically more stable way to find the interpolating polynomial

is the approach using Lagrange polynomials.



Definition: Lagrange basis

The Lagrange polynomials associated to the nodes  are the  polynomials

for .

Each of these polynomials is of degree , moreover they satisfy the cardinality condition:

i.e. they are  only on the nodal point with the same index, but  on all other nodal points.

Visualisation of Lagrange polynomials on an equally spaced grid between  and :

Number of nodal points: 4



In particular the nodal property (6) makes it extremely convenient to use a Lagrange polynomial

basis to find the interpolating polynomial :

Proposition 1

The -th degree polynomial  interpolating the data  for  is given by

Proof: This can be easily verified:

Since every linear combination of an -th degree polynomial is itself an -th degree

polynomial,  (as a linear combination of the -th degree Lagrange polynomials) is

a -th degree polynomial.

Moreover



which confirms that  is the interpolating polynomial.

Example: Using Lagrange polynomials

Using Lagrange basis functions, find the interpolating polynomial through the points

, , :

Using equation (7) we obtain

where

such that

For reference: In Julia a convenient way to interpolate a polynomial to a given set of points is

provided by the Polynomials  package, e.g.



Error analysis
With the Lagrange polynomials we have a simple approach to find an interpolating polynomial.

From a numerical analysis perspective this raises the question how good a polynomial

approximation is. Or to put it into the language of data-driven methods: Having obtained an

interpolation model, how well does it generalise to unseen  ?

To study this mathematically we consider the following setup: Assume we have a true function 

and we are allowed to observe  samples  from it. We want to understand the

following questions:

Would the polynomial approximation converge to  as we observe more and more samples

of ?

How fast is this convergence ?

What is our error if we only observe  samples  and are not given any more

information ?

let

poly = Polynomials.fit(temperature, rate)

p = scatter(temperature, rate; ylims=(1.65, 1.95), xlims=(245, 355),

            label="data", xlabel="temperature", ylabel="rate")

plot!(p, poly; label=L"Polynomial interpolant $p$", lw=2, xlims=(245, 355))

end
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In a mathematical language, we want to check whether

Provided this convergence is indeed the case, we are usually also interested in the convergence rate

–- similar to our discussion about fixed-point algorithms. Clearly, the faster  converges  the

better, since we need less samples to obtain an accurate reconstruction of the original .

A standard metric to measure how good the approximation of  to  is, is to check the largest

deviation between the differences of function vaules on the domain of our data. Assuming we want

to approximate  on the interval  we thus compute

which is the so-called infinity norm of the difference . More generally the infinity norm

 for a function  is the expression

i.e. the maximal absolute value the function takes over its input domain .

Note that the error  effectively measures how well our polynomial interpolation

model  generalises to unseen datapoints  with : If this error 

is small,  is a very good model for . If this error is large, it is a rather inaccurate model.

We return to the interpolation problem. For illustration in this section we contrast two cases,

namely the construction of a polynomial interpolation of the functions

fratio (generic function with 1 method)

each defined on [-1, 1].

Change the number of samples using the slider and observe the convergence:

n_samples_comparison =  10

begin

fsin(x)   = sin(5x)

fratio(x) = 1 / (1 + 20x^2)

end
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We see that the polynomial interpolation of fsin  (left) converges very well to the original function.

Moreover this convergence is very quickly, since already for n_samples_comparsion = 10  hardly

any difference is visible. On the other hand fratio , i.e the rather innocent looking function

converges very poorly. In particular from about n_samples_comparsion = 8  spurious oscillations

start to appear towards the end of the domain , which become more and more pronounced

as we increase the number of samples and the polynomial degree.

To understand this behaviour the following error estimate is useful:

Theorem 2

For a -times differentiable function  and

 equally distributed nodes in  the -th degree polynomial

interpolant  of the data  with  satisfies the estimate



where the infinity norm  for a function  mapping from a domain  is the

expression

i.e. the maximal absolute value the function takes.

The key conclusion of the previous theorem is that if the right-hand side (RHS) of (8) goes to zero,

than the the error  neccessirly vanishes as  increases.

So let's check this for our functions.

For  we can easily verify  as well as

, such that

and (8) becomes (using  and ):

In contrast for  one can show

and as a result convergence is not guaranteed.

Looking more closely at the error of the problematic case, that is plotting  as a

function of , we observe an interesting pattern:



For small polynomial degrees, the error decreases homogeneously as we increase . Additionally

we observe some almost vertical "drops", where the error goes down to machine precision (about

). This is because at the nodal points –- by construction –- the polynomial is exact and only

the floating-point, error remains.



Switching to higher degrees we observe the error to again increase at near the boundaries of the

interval . However in the central part of the interpolation domain  the error

remains constantly small. This visual result is also confirmed by a more detailed analysis, which

reveals, that the origin is our choice of a regular spacing between the sampling points, an effect

known as Runge's phaenomenon.

Observation: Runge's phaenomenon

Polynomial interpolation employing equally spaced nodal points to construct the interpolant

 may lead to a non-convergence as . Moreover while for small  the error in the

infinity norm  still decreases, for large  this behaviour can change, such that for large 

the error can keep increasing as  increases.

The solution to this dilemma is to employ irregularly spaced nodal points, in particular the nodal

points need to become more densely spaced towards the boundary of the domain. One especially

important node family are the Chebyshev extreme points defined by



Using these to interpolate a degree  polynomial gives a uniform convergence behaviour as

:

Notably Chebyshev nodes enjoy the following convergence result:

Theorem 3

Let  be a function, which is analytic in an open interval containing , that

is the Talyor series of  converges to  for any  from this open interval. Then we can find

constants  and  such that

where  is the unique polynomial of degree  defined by interpolation on  Chebyshev

points.

This is an example of exponential convergence: The error of the approximation scheme reduces by

a constant factor whenever the polynomial degree  is increased by a constant increment.

The graphical characterisation is similar to the iterative schemes we discussed in the previous

chapter: We employ a semilog plot (using a linear scale for  and a logarithmic scale for the error),



where exponential convergence is characterised by a straight line:

When designing approximation schemes, obtaining exponential convergence is one of the desired

properties.

Observations

For exponential convergence, the error reduces by a constant factor

A straight line is obtained when looking at the error norm on a log -scale versus an

appropriate accuracy parameter (such as the polynomial degree , the spacing of the

interpolating notes etc.)

Potential confusion: Convergence terminology

When discussing convergences rates of iterative numerical algorithms and the accuracy of

numerical approximation schemes (interpolation, differentiation, integration, discretisation)

unfortunately a different terminology is employed. In the following let  and 

denote appropriate constants.

Iterative schemes: Linear convergence

If the error scales as  where  is the iteration number, we say the scheme has

linear convergence. (Compare to the last chapter.)



Approximation schemes: Exponential convergence

If the error scales as  where  is some accuracy parameter (with larger  giving

more accurate results), then we say the scheme has exponential convergence.

Stability of  polynomial interpolation
In the previous discussion we identified the Chebyshev nodal points to provide exponential

convergence by avoiding Runge's phaenomenon. Another common question to ask in numerical

analysis is referred to as numerical stability. The goal of stability analysis is to quantify by how

much small perturbations in the input data translate to the obtained result of a numerical

algorithm.

We consider the case of interpolating a polynomial  to  data points  for

, where  and the  are drawn from a

function , i.e. . Our goal is effectively to recover  as close as possible. However, in

many practical settings we don't have access to the true data , since we are only able to

obtain data through a noisy measurement. This means that the data we are actually able to collect

is much rather  where  represents the measurement error. We suppose further

that  for all  where  is a small number, i.e. that overall the errors

are small. Instead of producing an interpolating polynomial  using the exact data , our

procedure only has access to the noisy data , thus producing the polynomial .

In stabilty analysis we now ask the question: How different are  and  given a measurement

noise of order .

Let us investigate this using the Lagrange basis, where

therefore for all :

Introducing

Definition: Lebesgue's constant



Given  nodes  from the interval  we denote Lebesgue's

constant as the quantity

we can rewrite this as

Notably, if  is small, then small measurement errors  can only lead to small perturbations in the

interpolating polynomial. In that case our polynomial interpolation procedure would be called

stable or well-conditioned. By contrast, if  is very high, then already a small measurement error

 allows for notably deviations in the resulting interpolant –- we are faced with a badly conditioned

problem.

Considering the two polynomial interpolation schemes we discussed, one can show

Equally distributed nodes:  as 

Chebyshev nodes: 

As a graphical visualisation:



Therefore for Chebyshev nodes the condition number grows only logarithmically with , while for

equally spaced nodes it grows exponentially !

Thus Chebyshev nodes do not only lead to faster-converging polynomial interpolations, but also

to notably more stable answers. As a result they are one of the standard ingredients in many

numerical algorithms.

General principle: Condition number

For numerical problems the factor relating the error in the output quantity –- here

 –- to the error in the input quantity –- here  –- the

condition number of the problem. For polynomial interpolation the condition number is exactly

Lebesgue's constant .

Since for Chebyshev nodes  stays relatitvely small, we would call Chebyshev interpolation

well-conditioned. In contrast interpolation using equally spaced nodes is ill-conditioned as the

condition number  can get very large, thus even small input errors can amplify and

drastically reduce the accuracy of the obtained polynomial.

We will meet other condition numbers later in the lecture, e.g. in Iterative methods for linear

systems.

https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html


Let us illustrate this result grapically. We consider again our function  in the

interval , which we evaluate at the distinct nodes  –- either equally spaced

(left plot) or using Chebyshev nodes (right plot). Additional for both cases we consider an exact

evaluation, i.e. points  as well as noisy evaluations  with

where  is a random number of magnitude .ε

Number of nodes n_nodes_poly =  

Noise amplitude ε_poly =  

10

0.010000000000000002

As we increase polynomial order and noise, we see larger discrepancies for the interpolation based

on equispaced points then for the Chebyshev points.

Piecewise linear interpolation

Note: We will only discuss the high-level ideas of this part in the lecture. You can expect that there

will not be any detailed exam questions on Jacobi and Gauss-Seidel without providing you with the



formulas and algorithms.

In the previous section we looked at -th degree polynomial interpolation, which we found to be

poorly conditioned, e.g. when equispaced nodes and high polynomial degree are employed. An

alternative construction is to employ piecewise polynomials, i.e. to interpolate a separate

polynomial betwen each data point. The most simple approach in this regard is linear interpolation,

i.e. just connecting the dots of each data point by a straight line.

Definition: Piecewise linear interpolation

Given nodes  and associated data  for  the

piecewise linear interpolant  is given by

Instead of using this definition to implement piecewise polynomial interpolation, a more practical

approach is to follow the idea of equation (1) and construct an appropriate set of basis functions for

piecewise polynomial interpolation. These are the

Definition: Hat function

Given nodes  their associated hat functions are the functions

for .

In code these may be obtained as:



hatfun (generic function with 1 method)

We plot the four hat functions for the example nodal points , , ,

:

function hatfun(nodes, i)

# Function to generate the i-th hat function corresponding to nodal

# points given in the vector nodes. It is assumed that nodes is sorted

n = length(nodes) - 1

# Define an inner function, which is returned
return function (x)

if i > 1 && nodes[i-1] ≤ x ≤ nodes[i]

return (x - nodes[i-1]) / (nodes[i] - nodes[i-1])

elseif i ≤ n && nodes[i] ≤ x ≤ nodes[i+1]

return (nodes[i+1] - x) / (nodes[i+1] - nodes[i])

else

return 0

end

end

end
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Since each function  is globally continuous and moreover linear inside every interval ,

any linear combination  of hat functions will have the same property. Conversely,

since the piecewise linear functions form a vector space, every piecewise linear functions is

expressible in the hat function basis, i.e. in particular for our piecewise linear interpolant we have

for some coefficients , .

let

nodes = [0.0, 0.45, 0.7, 1.0]

p = plot(; layout=(4, 1), xlabel=L"x", ylims=[-0.1, 1.1], ytick=[1.0])

for i in 1:length(nodes)

Hᵢ = hatfun(nodes, i)
plot!(p, Hᵢ, 0, 1; subplot=i, label=LaTeXString("\$H_$i\$"), lw=2, c=i)

for (ii, node) in enumerate(nodes)

scatter!(p, [node], [Hᵢ(node)]; subplot=i, c=ii, label="")

end

end

p

end
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Similar to the Lagrange polynomials the hat functions satisfy a cardinality condition

With this in mind interpolating a piecewise linear polynomial becomes analogous to (7) the simple

expression

(i.e. the coefficients in above expressions ).

As a result piecewise linear interpolation becomes easy to implement:

pwlinear (generic function with 1 method)

We try this interpolation algorithm on our previous challenging example

using n_pwlinear  equispaced nodes in :

n_pwlinear =  10

function pwlinear(x, y)

# Construct a piecewise linear interpolation for the data values (xᵢ, yᵢ)

# given in the vectors x = [x₁, …, xₙ₊₁] and y = [y₁, …, yₙ₊₁]
H = [hatfun(x, i) for i in 1:length(x)]

function interpolant(xx)

sum(y[i] * H[i](xx) for i in 1:length(x))  # (12)

end

end
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let

nodes  = range(-1, 1; length=n_pwlinear)

p₁ₕ = pwlinear(nodes, fratio.(nodes))

p = plot(fratio; xlims=(-1, 1), ylims=(0.0, 1.1), lw=2, 

label=L"f_\textrm{ratio}", ls=:dash,
         title="Piecewise linear interpolation")

scatter!(p, nodes, fratio.(nodes); label="nodes")

plot!(p, p₁ₕ, lw=2; label=L"p_{1,h}")

end
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Unlike the case of polynomial interpolation, we observe a nice convergence as we increase

n_pwlinear . Let's analyse this in more detail in the next section.

Error analysis
For the error analysis of the piecewise linear interpolation we restrict ourself to the case of

equidistant nodes, which we considered in the most recent exercise. That is we assume a

partitioning of the interval  with  and equal nodal distance

.

In this setting the error analysis is a consequence of Theorem 2, equation (8). Indeed, for every

interval  we are constructing a linear interpolation between the points  and

let

p = plot(; xlims=(-1, 1), title="Error for piecewise interpolation", 

ylabel=L"p_{1h} - f_{ratio}")

for n_nodes in (5, 10, 30, 40)

nodes = range(-1, 1; length=n_nodes)

p₁ₕ = pwlinear(nodes, fratio.(nodes))

error(x) = p₁ₕ(x) - fratio(x)

plot!(p, error, lw=2; label="$(n_nodes) nodes")

end

p

end
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. In Theorem 2 we can thus set  and  and obtain

therefore

We summarise in a Theorem:

Theorem 4

Let  be a  function and  with equal nodal

distance . The piecewise linear polynomial interpolating the data 

satisfies the error estimate

with .

Note, that this theorem is only true if the second derivative of  is continuous. Usually the second

derivative  and thus its maximum norm  are not known. However, we obtain that the

interpolation error goes as  as . This is an example of quadratic convergence. More

generally we define

Definition: Algebraic convergence

If an approximation has an error with asymptotic behaviour  as  with  integer

and  being a discretisation parameter (e.g. grid spacing, nodal distance, etc.), we say the

approximation has algebraic convergence. If  is the largest such integer (i.e. the error is not

) then  is the order of accuracy.



Moreover we often refer to the case  as linear convergence,  as quadratic

convergence and so on.

Potential confusion: Convergence terminology

Note again the difference in convergence terminology between iterative methods and

approximation schemes. What is called algebraic convergence for approximation schemes

would be sub-linear convergence for iterative schemes.

Let us finally illustrate the quadratic convergence of piecewise polynomial interpolation graphically.

Since the error  as , taking logarithms on both sides we obtain

Therefore the logarithm of the error is a linear function in the logarithm of the discretisation

parameter. Moreover the slope gives us the convergence order, here . Note, that to obtain

this behaviour any logarithm would suffice. We choose a -  plot as this is most easily

realised in Plots.jl  and indeed exhibits a slope of , meaning quadratic convergence (note that

the -axis is reversed in the plot.)



let

fine = range(-1, 1, length=1000)  # Very fine grid

n = 5:5:50   # Number of nodes

maxerror = Float64[]  # Empty array for Float64 numbers

for (i, n_nodes) in enumerate(n)
nodes = range(-1, 1; length=n_nodes)

p₁ₕ = pwlinear(nodes, fratio.(nodes))

push!(maxerror, maximum(p₁ₕ.(fine) - fratio.(fine)))

end

h = 2 ./ n   # Discretisation parameter  == [2/element for element in n]

p = plot(h, maxerror; label="error", title="Convergence piecewise linear",

         xlabel=L"h", xflip=true, xscale=:log10, ylabel=L"|| f-p_{1,h} 
||_\infty",
         yscale=:log10, mark=:o, legend=:topright)

# Generate guiding slope

order2 = (h ./ h[1]) .^ 2

plot!(p, h, order2, label=L"O(h^2)", ls=:dash)

yticks!(p, 10.0 .^ (-2.5:0.5:0))

xticks!(p, 10.0 .^ (-0.5:-0.25:-2))

p

end
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Convergence with respect to n or h

When discussing the convergence of a numerical method or an approximation scheme one

typically finds two formulations of limits in the literature.

Convergence as : In this case  is typically the number of steps, the number of

samples or the size of the approximation space. For our case of building an

interpolating function  to a ground-truth function  the number  is the number of

data points and we study how  as .

Convergence as : In this case  is typically the size of a step, the distance between

samples or the size of a small displacement. For our case of building an interpolating

function  the value  is the spacing between nodes, so  and we study how

 as .

The two formulations are often used interchangably when discussing convergence and the

general idea is that  is (up to constants) the inverse of  and vice versa, so  or

.

To complete the definition of convergence classes, let us return to the case of Chebyshev

polynomial interpolation. We already mentioned below Theorem 3, that this method exhibits

exponential convergence. While for this setting the nodal points are not equally spread, the

definition of the nodal points (  for ) allows to identify a

discretisation parameter , which scales the distance between the nodes. We obtain the

definition:

Definition: Exponential convergence

If an approximation has an error scaling as  with  and  two constants and

 a discretisation parameter, we say the approximation has exponential convergence.

To determine the convergence behaviour graphically we thus need to look at

a log-log plot (  versus ) if we suspect algebraic convergence. In this case the

convergence will be a straight line with slope .

a log-linear plot (  versus ) if we suspect exponential convergence. Again a straight line

with slope  will result.



Stability analysis
We are again interested in the effect of measurement noise on the quality of the polynomial

interpolation. The goal is to compare the interpolation of a piecewise linear polynomial 

employing the noise-free data  with  with the polynomial  obtained from

the noisy data  with  and . Due to (12) we can

directly write

and

By linearity we note

where in the last step  we used the partitition of unity property, which you are asked to prove as

an exercise.

Exercise

Use (12) to prove the partition of unity, namely .

Based on (14) we can conclude:

The condition number of piecewise linear interpolation is  independent of the data.

As a result small errors in the input values  (e.g. from measurements) only introduce

small perturbations in the polynomial: Piecewise linear interpolation is numerically stable.

We conclude by illustrating this result graphically. Again we consider the function

 on the interval , once evaluated without noise and once taking

 where . For construct the piecewise linear interpolation we take

 equally spaced nodes.

η

Number of nodes n_nodes_pl =  20



Noise amplitude ε_pl =  0.010000000000000002

Optional: Spline interpolation

Over polynomial interpolation our previously discussed piecewise linear interpolation has the

advantage that it is always convergent as the number of nodal points increases, even for an

equidistant scheme. Moreover it enjoys a condition number of , thus is numerically very stable.

However, it suffers from a few flaws, which make it unsuitable for many applications:

The interpolant  is globally only continuous since at all nodal points it is not neccessarily

differentiable.

Piecewise linear interpolation only converges quadratically. To understand why this is a

problem, consider the following convergence curves on our example . We

simply need a lot more nodal points (and thus data / measurements) to get the same

accuracy !

Show splines: 



An alternative approach is cubic spline interpolation:

Definition: Spline interpolation

Let  denote the available data with ordering

 of the nodal points. An interpolating cubic spline is a

function  such that

1. Between the nodal points, i.e. within the intervals  the spline  is a

polynomial of degree .

2. , that is  is globally twice differentiable.

3. , that is  interpolates the data.

Due to condition 1. the restriction  to an interval can be written as

which makes in total  unknowns to be determined.

In order to satisfy the continuity condition 2. we need  and its first and second derivative to be

continuous at the nodal points, that is



where we used the notation  and . This gives

 equations.

Additionally the interpolating condition 3. gives us  equations, one for each of the nodes.

Summarising our findings we are thus left with

degrees of freedom, which we need to set to determine a unique spline. For this there are two mjor

alternatives:

Natural spline: 

Not-a-knot spline:  and 

Natural splines have properties that make them theoretically more interesting, but not-a-knot

splines give better pointwise accuracy.

Let's check how splines behave for our function

using n_spline  equispaced nodes in .

n_spline =  10



spinter (generic function with 1 method)

Already around 18 nodal points there is hardly any difference between the function and the

interpolant visible.

For examples as well as more details on the computation of splines see chapter 5.3 of Driscoll,

Brown: Fundamentals of Numerical Computation.

Optional: Error analysis
For cubic splines the following convergence result is known:

Theorem 5

let

nodes = range(-1, 1; length=n_spline)

s₃ₕ   = spinter(nodes, fratio.(nodes))

p = plot(fratio; xlims=(-1, 1), ylims=(0.0, 1.1), lw=2,

         label=L"f_\textrm{ratio}", ls=:dash,
         title="Cubic spline interpolation")

scatter!(p, nodes, fratio.(nodes); label="nodes")

plot!(p, s₃ₕ, lw=2; label=L"s_{3,h}")

end
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Let  be  times differentiable and let  be

equispaced nodal points in . The cubic spline  interpolating the data 

satisfies the error bounds

where  is the length of each interval and , ,  are constants not depending on

.

We would thus expect a 4th order convergence. Let us investigate this visually using the function

. Since we expect algebraic convergence, we employ a log-log scale:



let

fine = range(-1, 1, length=1000)  # Very fine grid

n = 2 .^ (4:9)

maxerror = Float64[]  # Empty array for Float64 numbers

for (i, n_nodes) in enumerate(n)
nodes = range(-1, 1; length=n_nodes)

s₃ₕ = spinter(nodes, fratio.(nodes))

push!(maxerror, maximum(s₃ₕ.(fine) - fratio.(fine)))

end

h = 2 ./ n

p = plot(h, maxerror; label="error", title="Convergence spline interpolation",

         xlabel=L"h", xflip=true, xscale=:log10, ylabel=L"|| f-s_{3,h} 
||_\infty",
         yscale=:log10, mark=:o, legend=:topright, lw=2)

# Generate guiding slope

order4 = (h ./ h[1]) .^ 4

plot!(p, h, order4, label=L"O(h^4)", ls=:dash, lw=2)

p

end
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Regression and curve fitting

Consider again the case where we have acquired  data points ,  where

and the measurement noice  is substantial. If we were to use an interpolation technique –- as

discussed in the previous sections –- our goal would be to obtain a (potentially piecewise)

polynomial  such that . However, since  is only a noisy observation it makes little

sense to force the fitted polynomial to go through the data exactly.

In this section we will now consider a generalisation to interpolation, where we give up on the

interpolation condition . Instead we will now seek the representative  taken from

a model space , which best represents the data.

For example, in least-squares linear regression one seeks the straight line , which

yields the lowest squared error

If we denote by  the space of all polynomials of degree at most , then linear regression seeks

the , which gives smallest , or more mathematically

A generalisation to higher-order polynomials can be formally defined as

Definition: Least-squares m-th degree polynomial regression

Given  data points ,  the -th degree polynomial  satisfying

is called -th degree polynomial least squares approximation of the data. In other words  is

such that



Least-squares regression is usually much better suited to capture trends in data than polynomial

interpolation. To see this consider the following setting, where we fit polynomials of various degree.

Our example data is the -year averages of the worldwide temperature anomaly as compared to the

1951–1980 average:

In the plot we show interpolation (i.e.  in this case) as well as polynomial

regression with ,  and .

As expected for such noisy data: The lower-degree polynomials seem to do a much better job.

Note that in polynomial regression the choice of the error metric (15) essentially determines which

of the members of the model space  is considered to be the "best fit" –- in the sense of being the

minimiser of the minimisation problem (16). In this lecture we will only consider least squares

regression, for which the error metric is the sum of squares error

begin

year = 1955:5:2000

temp = [ -0.0480, -0.0180, -0.0360, -0.0120, -0.0040,

      0.1180, 0.2100, 0.3320, 0.3340, 0.4560 ]
end;
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Other choices are for example to employ

, the maximal elementwise deviation

, absolute deviations

However, we will not consider these further.

Least squares problems
We will now consider how to solve polynomial regression problems (16). For this we introduce some

linear algebra.

Recall from equation (1) at the start of discussion of polynomial interpolation, that each polynomial

 can be written as a linear combination

in terms of the monomial basis . Inserting this, the least-squares error

expression can be rewritten as

and further by introducing the matrix / vector notation

as

where  is the Euklidean norm. We again recognise  to be a Vandermonde

matrix similar to the polynomial interpolation case, just in this case a rectangular matrix as



, that is

In polynomial regression our job is now to minimise expression (16), which means that we want to

find the coefficient vector , which minimises . A procedure to obtain this coefficient

vector from of  and  is obtained by noting that polynomial regression is just a special case of a

general least-squares problem, defined as:

Definition: Least-squares problem

Given  and  with  find

The vector  is referred to as the residual of the least-squares problem.

Least squares problems arise in many applications (statistics, machine learning, ...) as well as

polynomial regression. For the latter case the Vandermonde matrix  plays the role of , the

vector of -values  the role of  and the vector of coefficients  the role of the unknown .

Solving (17) can in fact be achieved by a concise explicit expression:

Theorem 6

Let  and  with . If  satisfies  then  solves

the least-squares problem, i.e.  is the minimiser of .

Proof: We first consider the elementary identity for the sum of two vectors  and :



Now let  be an arbitrary vector and set  and  in the above

development. This results in

Therefore, if , then

which implies that  is the minimiser of .

Due to the overall importance of least-squares problems the solution equation 

is usually referred to as the normal equation.

Definition: Normal equations

Given  and , which define a least-squares problem ,

the solution equation

or equivalently

are called the normal equations.

For a geometric interpretation of the normal equations, see chapter 3.2 of Driscoll, Brown:

Fundamentals of Numerical Computation.

Based on this strategy we can now perform polynomial regression. We again employ the word

temperature data between 1950 and 2000. You can change the polynomial degree using the slider:

m_poly =  2

https://tobydriscoll.net/fnc-julia/leastsq/normaleqns.html


let

x = year

y = temp

# Build Vandermonde matrix (using BigFloat to avoid numerical issues)

V = ones(BigFloat, length(x), m_poly + 1)
for k in 2:m_poly+1

V[:, k] = V[:, k-1] .* x

end

# Solve normal equations

c = (V'V) \ (V' * y)

# Construct polynomial

polynomial(x) = evalpoly(x, c)

# Plot result
p = scatter(year, temp; label="data")

plot!(p, polynomial; label="Regression m = $m_poly", lw=2)

p

end
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Error analysis
In the general setting the analysis of least-squares problems is rather involved. Here, we will restrict

ourselves to exploring the parameter space a little using an interactive visualisation.

Some interesting experiments with the visualisation below.

Number of samples n =  

Polynomial degree m =  

Noise amplitude ε =  

20

2

0.010000000000000002

To close off we state some key results, which illustrate the key properties of the least-squares

problem. We recall the setting: We are given  data points ,  where

are the noisy observations of a function . Further we assume that , i.e. the noise follows

a distribution with mean zero and  is the square root of the variance of the noise.



In the absence of measurement noise, i.e. , least-squares can recover polynomials

exactly. Imagine  to be a polynomial of degree . In this case the polynomial  is the

only -th degree polynomial to give a zero least-squares error, i.e.

and our result is exact.

With non-zero measurement errors the approximation error  is proportional to

. Thus while every measurement has been perturbed by an error  of order around

, the approximation error is much smaller of order  and moreover becomes

smaller as the number of samples increases.

However, if the degree of the fitting polynomial  becomes too large –- say comparable to

 –-, then the least-squares polynomial becomes similar to the interpolating polynomial. This

we saw to become unstable as  gets large. Therefore the quality of the least-squares

approximation does deteriorate when .

Summary

Interpolation and least-squares regression techniques is one common approach to extract a

model  from  observed data points  (with ). Based on this model

one can make predictions about unseen  namely as the points .

Polynomial interpolation on equally spaced data points leads to Runge's phaenomenon as

the polynomial degree  is growing.

Moreover this problem is ill-conditioned, i.e. extremely susceptible to numerical or

experimental noise in the training data .

One solution: Keep the polynomial degree  low, for example:

Use piecewise polynomial (e.g. piecewise linear) interpolation techniques.

Use more observations  than , i.e. perform least-squares regression with 

This generally leads to methods with algebraic convergence when approximating a

smooth function .

Moreover such problems are generally well-conditioned. E.g. for piecewise linear

interpolation the condition number is  independent of the employed data –- the best-

possible value.

The other solution is to use non-equally spaced points:

The typical approach are Chebyshev nodes



These lead to exponential convergence

Notice that all of these problems lead to linear systems  that we need to solve. How this

can me done numerically we will see in Direct methods for linear systems.
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