
Click here to view the PDF version.

Root finding and fixed-point problems

Revisiting the diode model

Fixed-point iterations

Visualising fixed-point iterations

Convergence analysis

Stopping criteria and residual

Convergence order

Optional: Bisection method

Newton's method

Achieving higher-order convergence

Construction of Newton's method

Graphical interpretation

Convergence analysis

Implementation

Lessons to learn from fixed-point iterations

Optional: Secant method

Non-linear equation systems

begin

using Plots

using PlutoUI

using PlutoTeachingTools

using LaTeXStrings

using Printf

using ForwardDiff

using LinearAlgebra

using HypertextLiteral

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

9

10

Table of Contents

https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.pdf

Root finding and fixed-point problems

We saw in the introduction that problems where one wants to find the root or zero of a function

arise rather naturally in scientific questions. Moreover as soon as is more complicated than just a

simple polynomial, it becomes quickly challenging to find its roots using pen and paper. We thus

have to develop numerical methods for solving such problems.

Let us first define the problem formally:

Definition: Rootfinding problem

Given a continous scalar function find a value such that

Such a value is called a root of .

In fact an equivalent and sometimes more intuitive way to think about solving equations

is to recast them as a fixed point-problem:

Definition: Fixed-point problem

Given a continous function a point , such that , is called a fixed

point of . The problem of finding a fixed point of is equivalent to finding a root of the

function .

Such transformations can also be reversed, i.e. given an for root finding, we could also seek a

fixed-point of . Moreover the transformations are not unique. Indeed, for any

 finding a fixed-point of implies .

To start of our investigation we will explore different ways of numerically solving our circuit

problem.

Revisiting the diode model

Recall the circuit diagram of the diode model

where we had the relationships

and wanted to solve for the diode voltage . We consider two iterative methods to find it,

motivated from the physical setting.

Method 1

In many physical settings one often already has a good general idea about what should be

like. In this case a reasonable starting point would be to assume that the diode is open and

thus the voltage across the diode is zero, thus we set .

Given the voltage across the diode, we find the voltage across the resistor as

 and thus the current

Since the current in all elements of the circuit is the same, we can estimate the voltage across

the diode by reversing the Shockley diode model:

We hope for this new estimation to be better than the initial one .

Finally we close the loop and repeat the process from top to bottom using instead of ,

thus obtaining , etc. The resulting sequence we hope to converge to the

true diode voltage, that is

Mathematically, the voltage estimate obtained in the -th iteration is given by

where

If the method converges to a value , then , i.e. we found a fixed point of .

Let's see if this actually works for our example. We select the parameters:

i0 = 1.0

v0 = 0.1

R = 1.0

V = 1.0

and define the fixed-point map

glog (generic function with 1 method)

finally we iterate 10 steps, recording along the way the produced iterates

function glog(vD)

v0 * log((V - vD) / (R * i0) + 1)

end

1

2

3

 iter 1: vD = 0.064185388617239iter 1: vD = 0.064185388617239
iter 2: vD = 0.066052822568595iter 2: vD = 0.066052822568595
iter 3: vD = 0.065956308405801iter 3: vD = 0.065956308405801
iter 4: vD = 0.065961298808626iter 4: vD = 0.065961298808626
iter 5: vD = 0.065961040778816iter 5: vD = 0.065961040778816
iter 6: vD = 0.065961054120317iter 6: vD = 0.065961054120317
iter 7: vD = 0.065961053430491iter 7: vD = 0.065961053430491
iter 8: vD = 0.065961053466159iter 8: vD = 0.065961053466159
iter 9: vD = 0.065961053464315iter 9: vD = 0.065961053464315
iter 10: vD = 0.065961053464410iter 10: vD = 0.065961053464410

Hooray! After 10 steps about 12 significant figures have stabilised and we thus expect the error to be

smaller than .

But setting up such iterations is in fact not unique:

Method 2

Assume again a is provided by physical intuition.

Using the Shockley relation we obtain the current through the diode as

, which again equals the current through the resistor.

The voltage across the resistor is thus , from which we can compute an updated

voltage estimation across the diode as

Again closing the loop and iterating multiple times, we obtain at the -th iteration

where

Let's test this method as well:

let

vD = 0.1

for i in 1:10

vD = glog(vD) # Call fixed-point map

@printf "iter %2i: vD = %.15f\n" i vD # Print formatted data

end

end

1

2

3

4

5

6

7

gexp (generic function with 1 method)

 iter 1: vD = -0.718281828459045iter 1: vD = -0.718281828459045
iter 2: vD = 1.999240475732571iter 2: vD = 1.999240475732571
iter 3: vD = -481494204.686199128627777iter 3: vD = -481494204.686199128627777
iter 4: vD = 2.000000000000000iter 4: vD = 2.000000000000000
iter 5: vD = -485165193.409790277481079iter 5: vD = -485165193.409790277481079
iter 6: vD = 2.000000000000000iter 6: vD = 2.000000000000000
iter 7: vD = -485165193.409790277481079iter 7: vD = -485165193.409790277481079
iter 8: vD = 2.000000000000000iter 8: vD = 2.000000000000000
iter 9: vD = -485165193.409790277481079iter 9: vD = -485165193.409790277481079
iter 10: vD = 2.000000000000000iter 10: vD = 2.000000000000000

Even though the method seems equally plausible as method 1 on first sight, it clearly performs

worse and does not converge at all. For finding the voltage across the diode it is thus not useful.

Let us now formalise these methods mathematically in order to analyse them more carefully.

Fixed-point iterations

As discussed in the previously the equations of the diode model (1) lead to the non-linear problem

where its root is the desired diode voltage. In both Method 1 and Method 2 we effectively rewrote

this equation into a different fixed-point problem:

To solve these fixed-point problems we then applied

function gexp(vD)

V - R * i0 * (exp(vD/v0)-1)

end

1

2

3

let

vD = 0.1

for i in 1:10

vD = gexp(vD) # Call fixed-point map

@printf "iter %2i: vD = %.15f\n" i vD # Print formatted data

end

end

1

2

3

4

5

6

7

Algorihm: Fixed-point iteration

Given a fixed-point map and initial guess , iterate

until a stopping criterion is reached.

If for the sequence generated by Algorithm 1, then , i.e. is a

fixed point of . At this point we do not yet specify what is a good stopping criterion. We will return

to this point in the Convergence analysis section.

If we are faced with a fixed point problem (finding such that) then Algorithm 1 can

be directly applied. However, to apply the fixed-point method to a root-finding problem (seek

s.t.) we first need to rewrite the non-linear equation into a fixed-point

problem, i.e. identify a suitable , such that if is a root of , then

On we then apply fixed-point iteration.

We will see an example of this rewriting in the next section.

Visualising fixed-point iterations
Before we proceed to a closer mathematical analysis of fixed-point methods and ultimately to

understand the difference between employing and , let us first consider a simpler case,

where it is easier to obtain a visual understanding.

We consider solving non-linear equation with

In this one can easily construct four equivalent fixed-point equations with ,

namely

begin

g₁(x) = x - (1/2) * (log(x + 1) + x - 2)

g₂(x) = 2 - log(x + 1)
g₃(x) = exp(2-x) - 1

g₄(x) = (1/2) * x * (log(x+1) + x)

end;

1

2

3

4

5

6

Example: Rewriting f(x)=0 as a fixed point problem

We are given the problem to solve with . We show how

to construct and .

First . At convergence we have that

This is now a fixed-point problem in where we seek a fixed point of the function

, which is just the left-hand side of the expression.

Now . Again starting from

where again we get a problem , i.e. finding a fixed point of .

To visualise the fixed-point iterations, we choose yet another understanding of fixed point

problems:

Observation: Fixed point problems are about curve intersections

We can understand a fixed-point problem, where we seek an such that as the

problem of finding the intersection of the curve with the line . In other words

we want to find a point such that and at the same time .

The following plot uses this observation to visualise fixed-point iterations. The idea is to think of

the fixed-point iterations in the following way:

We start at some `xstart`. Then we use the condition to arrive at the first,

grey point, that is .

From there we use the condition , i.e. to arrive at the point

 (green arrow)

Next, we again use and obtain , thus the point (purple

arrow).

From there we continue setting to get

And we continue analogously until we hopefully converge.

Use the slider and the drop-down menu to switch between the fixed-point functions and the

starting point to see if this works.

xstart =

g = g₁

Show labels:

Show gradient:

4.0

We notice that that and converge, while and do not.

Their distinctive feature becomes clear when we also show the gradient of at the fixed point (click

the checkbox above).

Convergence occurrs when the slope is between and , i.e. the graph sits between the regions

spanned by the orange lines of slope and through the fixed point.

Convergence analysis
We consider the setting finding a fixed-point for a differentiable function . Our

hypothesis is that the fixed-point method converges if , while it diverges when

.

To establish this result more rigorously we study the beviour of the error sequence

The goal is to find an expression that relates with and in this way recursively to , the

error of the initial guess.

First we note and we develop the Taylor expansion of around :

where

which means that there exist positive constants such that

i.e. that stays bounded by the next term of the Taylor expansion (up to a multiplicative

constant). The notation is thus a mathematically precise way of saying that there are

more terms that we don't show but their order is at most . See also the discussion in

Revision and preliminaries on Taylor approximations.

Using (5) and the key fixed-point iterations equation, we obtain

https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html

Taking moduli on both sides:

We employ this relation now in a recursive argument. Assume we choose a good initial guess, then

 is close enough to , such that is neglibile compared to . Similarly,

provided that the iteration makes progress, is in turn smaller than and so

forth. Therefore

In other words as , i.e. the iteration progresses, approaches zero if ,

exactly as we concluded from the plot. Our argument proves the following

Theorem 1

Let be a function of class [1] and be a fixed point of . If

, then there exists an , such that for all

the fixed-point iterations converge to , i.e.

Moreover the convergence rate (formal definition below) is given by

i.e. the smaller the gradient, the faster the convergence.

[1]:

differentiable with continuous first derivative.

Exercise

Verify the theorem for the fixed-point problems we considered so far, i.e. show that

The map has a gradient modulus less than at the fixed point while has one

larger .

similarly verify analytically the convergence of the fixed-point iterations of and and

the divergence of and .

Stopping criteria and residual
Let us come back to the question at which point to stop the fixed-point iteration algorithm. Let

denote the tolerance to which we want to determine , i.e. we would like to stop the iterations as

soon as the error is smaller, .

Since is not known, this expression cannot be exactly computed during the iterations. We thus

need to seek an alternative approach. In a given step during the iteration we have likely not yet

achieved our goal, i.e. . A natural idea is thus to consider exactly the descrepancy

the so-called residual. A natural stopping criterion is thus

Algorithm: Fixed-point iteration stopping criterion

Employing this stopping criteria, the algorithm to find a fixed point of the function becomes

fixed_point_iterations_simple (generic function with 1 method)

We apply this function:

res_simple (fixed_point = 1.20794, residual = -7.54952e-15, n_iter = 27) =

Since res_simple is now a named tuple, we can access its individual fields to e.g. get the fixed

point

1.2079400315693258

or the number of iterations required

27

In practice it is often useful to also include a cap on the maximal number of iterations (for cases

where the algorithm does not converge) and to record a history of the visited points, which is

useful for later analysis.

function fixed_point_iterations_simple(g, xstart; tol=1e-6)

g: Fixed-point function

xstart: Initial guess

tol: Tolerance

rᵏ = Inf
xᵏ = xstart

k = 0

while abs(rᵏ) ≥ tol

xᵏ⁺¹ = g(xᵏ)

rᵏ = xᵏ⁺¹ - xᵏ

k = k + 1 # Update k

xᵏ = xᵏ⁺¹ # Update xᵏ accordingly

end

Return results as a named tuple

(; fixed_point=xᵏ, residual=rᵏ, n_iter=k)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

res_simple = fixed_point_iterations_simple(g₁, 4.0; tol=1e-14)1

res_simple.fixed_point1

res_simple.n_iter1

fixed_point_iterations (generic function with 1 method)

(fixed_point = 1.20794, residual = -7.54952e-15, n_iter = 27, history_x = [4.0, 2.19528, 1.5

Additional remarks on the residual

The residual is in general only an error indicator. This means that there is no guarantee that

 always implies .

In fact we can derive the residual-error relationship (see derivation below)

for some . Note, that this is just a conceptional expression as determining

 is in general as hard as finding . But it will be useful in some theoretical arguments.

For converging fiterations as . Therefore the interval gets

smaller and smaller, such that necessarily and as . We

note it is the gradient at the fixed point, , which determines how reliable our error

indicator is.

function fixed_point_iterations(g, xstart; tol=1e-6, maxiter=100)

g: Fixed-point function

xstart: Initial guess

tol: Tolerance

history_x = [xstart]
history_r = empty(history_x)

rᵏ = Inf # For initial pass in while loop

xᵏ = xstart # Starting point of iterations

k = 0

while k < maxiter && abs(rᵏ) ≥ tol

xᵏ⁺¹ = g(xᵏ)

rᵏ = xᵏ⁺¹ - xᵏ

push!(history_r, rᵏ)

k = k + 1 # Update k

xᵏ = xᵏ⁺¹ # Update xᵏ accordingly

push!(history_x, xᵏ) # Push next point to the history

end

Return results as a named tuple

(; fixed_point=xᵏ, residual=rᵏ, n_iter=k, history_x, history_r)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

fixed_point_iterations(g₁, 4.0; tol=1e-14)1

In particular if is close to , then the denominator of the prefactor may blow up and

the residual criterion may well stop the iterations too early. That is the actual

error may still be way larger than the residual and thus way larger than

our desired accuracy .

In contracst if than is an excellent stopping criterion as

 as .

Derivation of the residual-error relationship

General principle: Residual

Note, that the residual is a general terminology, which is not only applied to such an error

indicator in the context of fixed-point iterations, but used in general for iterative procedures.

The idea is that the residual provides the discrepancy from having fully solved the problem

and is thus a natural error indicator. The functional form, however, is different for each type of

iterative procedure as we will see.

Convergence order
When performing numerical methods one is usually not only interested whether an iteration

converges, but also how quickly, i.e. how the error approaches zero.

Definition: Convergence order and rate

A sequence , which converges to , is said to have convergence order and convergence

rate when there exists a and , such that

If (convergence order 1) we additionally require .

Some remarks:

Convergence order is also called linear convergence, any convergence is usually

called superlinear convergence. In particular is called quadratic convergence

These names become more apparent if one considers a logarithmic scale. Suppose for

simplicity that and all ratios in (7) are equal to (perfect linear convergence), then

 where is some constant. Taking the logs we get

which is a straight line.

Visual inspection: Log of error
The last remark provides an idea how to visually inspect the convergence order, namely by

plotting the error on a logscale. For our fixed point iterations, the (hopefully)

converging sequence is exactly generated by the relationship .

So let us inspect the convergence of and graphically:

So clearly both and converge linearly, but has a larger convergence rate.

Visual inspection: Residual ratio
One caveat with this analysis is that we cheated a little by assuming that we already know the

solution. An alternative approach is to build upon our residual-error relationship (6), i.e.

and investigate the limit of the residual ratio

let

fp = 1.2079400315693 # Approximate fixed point

p = plot(; yaxis=:log, xlabel="k", ylabel=L"|x^{(k)} - x_\ast|")

results_g₁ = fixed_point_iterations(g₁, 4.0; maxiter=15)

errors_g₁ = [abs(xn - fp) for xn in results_g₁.history_x]
plot!(p, errors_g₁, label=L"g_1", mark=:x, lw=2)

results_g₂ = fixed_point_iterations(g₂, 4.0, maxiter=15)

errors_g₂ = [abs(xn - fp) for xn in results_g₂.history_x]

plot!(p, errors_g₂, label=L"g_2", mark=:x, lw=2)

yticks!(p, 10.0 .^ (-6:0))

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

In other words if the residual ratios approach a constant for a chosen , then we have -th order

convergence.

In particular for linear order () we have

i.e. that the residual ratio should approach a constant as , which is the convergence rate.

This is a condition we can check also without knowing the solution:

Clearly in both cases these ratios become approximately constant as gets larger.

Observations

For linear convergence, the error reduces in each iteration by a constant factor

Looking at the error norm or residual ratio on a log -scale as the iteration proceeds is

often extremely insightful to understand the convergence behaviour (and debug

implementation bugs)!

let

p = plot(xlabel="k", ylabel=L"|r^{(k+1)}| / |r^{(k)}|")

results_g₁ = fixed_point_iterations(g₁, 4.0; maxiter=15)

residuals_g₁ = results_g₁.history_r

 ratios_g₁ = [abs(residuals_g₁[i+1] / residuals_g₁[i])
 for i in 1:length(residuals_g₁)-1]

plot!(p, ratios_g₁, label=L"g_1", mark=:x, lw=2)

results_g₂ = fixed_point_iterations(g₂, 4.0, maxiter=15)

residuals_g₂ = results_g₂.history_r

 ratios_g₂ = [abs(residuals_g₂[i+1] / residuals_g₂[i])

 for i in 1:length(residuals_g₂)-1]

plot!(p, ratios_g₂, label=L"g_2", mark=:x, lw=2)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Optional: Bisection method

Fixed-point iterations are a very useful tool to solve non-linear equations. However, their condition

for convergence, namely is very hard to verify a priori, i.e. before even attempting a

numerical solution of the problem we have at hand.

We will now develop a simple algorithm for root finding, which has the appealing feature, that

under an easily verifyable condition, it is guaranteed to converge.

For this let us revisit our diode circuit problem. the non-linear equation to solve was

We will now directly attempt to find a root of this equation.

f (generic function with 1 method)

This function has clearly a pronounced root near zero, where it changes its sign. This observation is

put on more rigorous footing by the following

f(x) = R*i0*(exp(x/v0) - 1) + x - V1

plot(f, ylims=(-3, 1), xlims=(-1, 0.5), label=L"f", lw=2)1

Theorem 2

Let be a continuous function defined on with (i.e. the function takes

different signs at the boundary of the interval). Then there exists a such that

.

This is a direct consequence of the intermediate value theorem, which we now want to exploit to

find a root numerically.

Suppose on satisfies the conditions of the theorem and let us consider the

midpoint of the interval . There are three possible cases:

If , then there is a root in

If , then root is in

If , we found a root.

By simply repeating this procedure (now on the smaller interval or) we obtain the

bisection method:

bisection_method (generic function with 1 method)

Its convergence plot again suggests a linear convergence:

function bisection_method(f, a, b; tol=1e-6)

@assert a ≤ b

@assert f(a) * f(b) < 0 # Otherwise the assumptions are not true

Initialise

k = 0

xᵏ = (a + b) / 2

history_x = Float64[] # Empty Array, but only for Float64 numbers

while abs(b - a) / 2 ≥ tol

k = k + 1

if f(xᵏ) * f(a) < 0

b = xᵏ # New interval [a, xᵏ]

else

a = xᵏ # New interval [xᵏ, b]

end

xᵏ = (a + b) / 2
push!(history_x, xᵏ)

end

(; root=xᵏ, history_x, n_iter=k)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

https://en.wikipedia.org/wiki/Intermediate_value_theorem

In our suggested implementation we choose to stop either when the length of the interval

drops below the desired tolerance or when a maximal number of iterations is reached. However, for

the bisection method we could even determine a priori how many iterations to perform as we will

now demonstrate.

The bisection method starts from an interval , which has width . In each

iteration we split the interval into two parts of equal size, therefore the interval in iteration has

size . By construction the root . Our estimate for the root is always the

midpoint of . Therefore the error in the -th step is bounded by

let

First get an almost exact root

reference = bisection_method(f, -0.5, 0.5; tol=1e-12)

Now run again to plot convergence

result = bisection_method(f, -0.5, 0.5)
errors = [abs(xn - reference.root) for xn in result.history_x]

plot(errors, label="bisection error", mark=:x, lw=2, yaxis=:log)

end

1

2

3

4

5

6

7

8

9

10

Suppose now we want to achieve an error less than , i.e. . According to (7) it is

sufficient to achieve

in order to have an error below the threshold . Rearringing (8) leads to

which thus provides a lower bound on the number of iterations we need to achieve convergence to

. Note that can be computed a priori before even starting the bisection algorithm. Moreover

since (7) and (8) are guaranteed bounds, iterating for at least iterations guarantees that an error

below is obtained. In comparison to our residual-based stopping criterion for the fixed point

iterations, this is a much stronger result.

From our analysis we can characterise the bisection method as follows:

If we can find an interval wherea given function changes sign, then the bisection

method almost certainly converges to a root.[2]

We can precisely control the error up to the point where we know a priori how many iterations

are needed.

However, the algorithm cannot be employed if such an interval cannot be found.

Exercise

Proove the linear convergence of the bisection method. What is the convergence rate ?

[2]:

Our analysis does not include the effect of finite-precision floating point arithmetic, which in

theory and in practice can inhibit convergence for some tricky cases.

Newton's method

Achieving higher-order convergence
So far we we only constructed methods with linear convergence order. In this subsection we first

want to understand what is required to achieve quadratic or higher-order convergence and then use

this to construct a second-order method.

Let us return to the fixed-point iterations and revisit the Taylor expansion (5) of

the fixed-point map . Continuing the expansion to second order we notice for the error

Assume now that , such that

By neglecting the small terms and rearranging we observe

when is close to . Comparing with the condition of order- convergence, i.e. that the limit

is a constant, we thus would expect such a fixed-point method with to give quadratic

convergence. More generally if and we

obtain a method of order . We summarise in a theorem:

Theorem 3

Let be a times continuously differentiable fixed-point map with fixed point

. If

then there exists a such that for all starting points the following

holds:

The fixed-point iterations converge to with convergence order .

The convergence rate is

Recall the residual-error relationship (6)

A corollary of our arguments is that for superlinear methods we have that , such that for

 close to (and thus) we have that

As a result for superlinear methods a residual-based stopping criterion becomes extremely reliable.

Construction of Newton's method
Newton's method and its variants are the most common approaches to solve non-linear equations

.

To develop these methods assume that the fixed-point is and we are given a point , which is

close to . We consider a Taylor expansion of around :

Where we made the condition has been made explicict. Now assume to

rearrange this to

If is close to , thus is small, then the last term is even smaller.

Neglecting it we can further develop this to an approximation for as

If we denote the RHS by , then a root of is a fixed point of and

vice versa. Performing fixed-point iterations on is the idea of Newton's method:

Algorithm 1: Newton's method (fixed-point formulation)

Given a function and an initial guess perform fixed-point iterations

on the map

Graphical interpretation

See the chapter on Newton's method in the MIT computational thinking class.

See chapter 4.3 of Driscoll, Brown: Fundamentals of Numerical Computation.

Convergence analysis
Our goal is to apply Theorem 3 in order to obtain both the result that Newton's method converges

as well as an understanding of its convergence order. We thus study the derivatives of at

the fixed point . We obtain

such that under the assumption that and we obtain

where we used . We summarise

Theorem 4: Convergence of Newton's method

https://computationalthinking.mit.edu/Fall23/images_abstractions/newton_method/
https://tobydriscoll.net/fnc-julia/nonlineqn/newton.html

Let be a twice differentiable () function and a root of . If and

, then Newton's method converges quadratically for every sufficiently close to . The rate

is

Some remarks:

Theorem 4 only makes a local convergence statement, i.e. it requires the initial value to

be close enough to .

If we can show that Newton's method is only of first order.

Implementation
Since in our construction Newton's method (Algorithm 1) is obtained in form of the fixed-point map

 the implementation is straightforward by employing the fixed_point_iterations

function we already implemented above:

newton_fp (generic function with 1 method)

In this setting where exhibits quadratic convergence, the residual-based stopping criterion

of fixed_point_iterations is actually extremely reliable, see the discussion after Theorem 3.

More conventionally one "inlines" the function into the fixed point iterations and expresses

the problem as

Algorithm 2: Newton's method (conventional)

function newton_fp(f, df, xstart; maxiter=40, tol=1e-6)

f: Function of which we seek the roots

df: Function, which evaluates its derivatives

xstart: Start of the iterations

maxiter: Maximal number of iterations

tol: Convergence tolerance

Define the fixed-point function g_Newton using f and df

g_Newton(x) = x - f(x) / df(x)

Solve for its fixed point:

fixed_point_iterations(g_Newton, xstart; tol, maxiter)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

Given a once differentiable function , a starting value and a convergence

tolerance , perform for :

1. Compute the residual

2. Update

Loop 1. and 2. until .

A corresponding implementation of Algorithm 2 is:

newton (generic function with 1 method)

To compare Algorithm 2 to Algorithm 1 note that steps 1 and 2 jointly apply the function

and that the residual is defined as

function newton(f, df, xstart; maxiter=40, tol=1e-6)

f: Function of which we seek the roots

df: Function, which evaluates its derivatives

xstart: Start of the iterations

maxiter: Maximal number of iterations

tol: Convergence tolerance

history_x = [float(xstart)]

history_r = empty(history_x)

r = Inf # Dummy to enter the while loop

x = xstart # Initial iterate

k = 0

Keep running the loop when the residual norm is beyond the tolerance

and we have not yet reached maxiter

while norm(r) ≥ tol && k < maxiter

k = k + 1

Evaluate function, gradient and residual

r = - f(x) / df(x)

Evaluate next iterate

x = x + r

push!(history_r, r) # Push residual and

push!(history_x, x) # next iterate to history

end

(; root=x, n_iter=k, history_x, history_r)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

To see how this method performs we compare against bisection and the plain fixed-point iterations

in we saw earlier.

let

First get an almost exact root

reference = bisection_method(f, -0.5, 0.5; tol=1e-14)

p = plot(yaxis=:log, xlims=(0, 20), ylims=(1e-12, Inf),

 xlabel="k", ylabel=L"|x^{(k)} - x_\ast|")

Run bisection

result = bisection_method(f, -0.5, 0.5; tol=1e-12)

errors = [abs(xn - reference.root) for xn in result.history_x]

plot!(p, errors, label="Bisection", mark=:x, lw=2)

Run fixed-point on glog

result = fixed_point_iterations(glog, 0.0; tol=1e-12)

errors = [abs(xn - reference.root) for xn in result.history_x]

plot!(p, errors, label="Fixed point", mark=:x, lw=2)

For Newton we need the derivative of f.

An easy way to obtain this derivative is to use algorithmic differentiation:

df(x) = ForwardDiff.derivative(f, x)

With this we run Newton

result = newton(f, df, 0.0; tol=1e-12)

errors = [abs(xn - reference.root) for xn in result.history_x]

plot!(p, errors, label="Newton", mark=:x, lw=2)

yticks!(p, 10.0 .^ (-12:-1))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

On the log-scale of the plot the quadratic convergence behaviour of Newton's method is clearly

visible.

Let us investigate a little the stability of this algorithm, especially with respect to the requirement

to choose a sufficiently close initial guess:

x0 = 2.5

Finally, let us investigate what quadratic convergence means in terms of our error estimate, the

residuals of the Newton fixed-point map. Since Newton converges fast and thus very quickly maxes

out the roughly 16 digits of precision in standard Float64 numbers, we employ Julia's arbitrary

precision BigFloat type to see more closely what is going on:

p

end

28

29

 1 -1.321206e-01 1 -1.321206e-01
 2 -1.509607e-022 -1.509607e-02
 3 -1.778470e-043 -1.778470e-04
 4 -2.435520e-084 -2.435520e-08
 5 -4.566801e-165 -4.566801e-16
 6 -1.605657e-316 -1.605657e-31
 7 -1.984881e-627 -1.984881e-62

We observe that from the starting point only iterations are required to get the result accurate to

61 digits.

Obervations

For quadratic convergence the error roughly squares in each iteration

Newton only converges well if the initial guess is chosen sufficiently close to the fixed

point.

Unlike the bisection algorithm the convergence behaviour of Newton is thus sometimes

less reliable. In particular if has multiple roots it is not guaranteed, that Newton

converges to the closest root. A good graphical representation of this phaenomenon are

Newton fractals.

Lessons to learn from fixed-point iterations

In this chapter we discussed fixed point iterations as well as Newton's method (Algorithm 2) as two

examples for iterative algorithms.

General form of iterative algorithms

More generally an iterative algorithm has the form:

let

We want to solve e^x * x = 2, which has a solution near 1.

f(x) = x*exp(x) - 2

df(x) = (x+1) * exp(x)

xstart = BigFloat(1.0)
result = newton(f, df, xstart; tol=1e-60)

for (i, r) in enumerate(result.history_r)

@printf "%3i %e\n" i r

end

end

1

2

3

4

5

6

7

8

9

10

11

12

https://en.wikipedia.org/wiki/Newton_fractal

1. Initialisation: Choose a starting point .

2. Iteration: For we perform the same

iterative procedure, advancing into .

3. Check for convergence: Once is similar enough to we consider the iteration

converged and exit the iterations.

Writing the second step more mathematically we can consider it as the application of a function ,

i.e. . In this formulation step 3 thus does nothing else than checking whether the

iterates no longer change. Or, put in other words, if we have found a fixed point of .

Observation: Iterative algorithms are fixed-point problems

By identifying the iteration step of any iterative algorithm with a function

we can view this algorithm as a fixed-point problem, where at convergence a fixed-point of is

found.

As a result any technique we discussed for understanding when fixed-point iterations converge

and at which convergence rate can be used in general to analyse the convergence of any iterative

procedure.

We will consider this aspect further, for example in Iterative methods for linear systems.

Optional: Secant method

See chapter 4.4 of Driscoll, Brown: Fundamentals of Numerical Computation.

Non-linear equation systems

Many applications are characterised by by more than one degree of freedom and more than a single

equation to satisfy. Here, we will generalise our discussion and consider a system of equations

Introducing the compact vector notation

https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://tobydriscoll.net/fnc-julia/nonlineqn/secant.html

we can define the multi-dimensional version of the root-finding problem:

Definition: Multidimensional root-finding problem

Given a continuous vector-valued function find a vector such that

.

Solving such nonlinear multi-dimensional equation systems is much more involved. Even

establishing basic mathematical properties, such as the existance or uniqueness of solutions is

typically quite difficult, let alone solving such equation systems analytically.

Running example: Definition

As the running example in this section we will consider the problem with

 given by

This example very much illustrates the previous point of the increased complexity: Even guessing

an approximate solution is not obvious, so we proceed to develop a numerical technique. Taking

inspiration from Newton's method in 1D we proceed to solve such equation systems by

linearisation. That is to say we start by developing to first order around some initial point ,

which we assume to be close enough to the solution

In this the Jacobian matrix is the collection of all partial derivatives of , i.e.

See also the discussion on multi-dimensional Talyor approximations in Revision and preliminaries.

The Jacobian very much plays the role of a generalised derivative of a multidimensional function .

Also not that (just like any derivative) it is a function of the independent variable .

Running example: Computing the Jacobian

For the running example identified above we can compute the Jacobian as

In expansion (11) the terms represent the linear part of around .

Assuming that these dominate, i.e. that the remaining term is indeed small and can

be neglected, we obtain:

In the same spirit as in the 1D Newton case we want to employ this relation in an iterative scheme,

where in iteration we have and want to compute an improved iterate . Inserting

as and as as in the 1D case, we obtain

or

Assuming that , i.e. that the Jacobian is non-singular, this linear system can be

solved and thus computed.

https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html

Note, that in accordance with the 1D case the residual in this multi-dimensional version is

, i.e. exactly the solution to the linear system in (12). Similar to the 1D case we

will thus employ the stopping criterion , where denotes the Euclidean norm

. All combined we obtain the algorithm

Algorithm 3: Multidimensional Newton's method

Given a once differentiable function , a starting value and a convergence

tolerance , perform for :

1. Compute the right-hand side and Jacobian .

2. Newton step: Solve the linear system for .

3. Update

Loop 1. to 3. until .

An implementation of this algorithm is given below:

newtonsys (generic function with 1 method)

Note that he linear system is solved in Julia using the backslash operator \ ,

which employs a numerically more stable algorithm than explicitly computing the inverse inv(A)

function newtonsys(f, jac, xstart; maxiter=40, tol=1e-8)

history_x = [float(xstart)]

history_r = empty(history_x)

r = Inf # Dummy to enter the while loop

x = xstart # Initial iterate

k = 0

while norm(r) ≥ tol && k < maxiter

k = k + 1

y = f(x) # Function value

A = jac(x) # Jacobian

r = -(A \ y) # Newton step

x = x + r # Form next iterate

push!(history_r, r) # Push newton step and

push!(history_x, x) # next iterate to history

end

(; root=x, n_iter=k, history_x, history_r)
end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

and then applying this to y . We will discuss these methods in Direct methods for linear systems.

Remark: Connection to conventional 1D Newton algorithm (Algorithm 2)

Let's apply newtonsys (Algorithm 2) to our running example. First we implement the functions

computing and for a given .

Since we want to estimate the convergence order we again run the Newton solver using arbitrary

precision floating-point numbers by using Julia's BigFloat number type:

Plotting the residual norm (our estimate of the error) in a log-plot gives a strong indication this is

again quadratic convergence:

begin

func(x) = [

-x[1] * cos(x[2]) - 1,

x[1] * x[2] + x[3],

exp(-x[3]) * sin(x[1] + x[2]) + x[1]^2 - x[2]^2

]

jac_func(x) = [
-cos(x[2]) x[1]*sin(x[2]) 0;

x[2] x[1] 1;

exp(-x[3])*cos(x[1]+x[2]) + 2x[1] exp(-x[3])*cos(x[1]+x[2]) - 2x[2] exp(-

x[3])*sin(x[1]+x[2])

]

end;

1

2

3

4

5

6

7

8

9

10

11

12

res = newtonsys(func, jac_func, BigFloat.([1.5, -1.5, 5]), tol=1e-50);1

https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html

Using the residual norms stored in the Newton result, we can now also look at the ratios

of two consecutive increments. Recall that for a -th order convergence these should converge to a

constant.

plot(norm.(res.history_r); yaxis=:log, label="", xlabel=L"k", ylabel=L"\Vert

e^{(k)} \Vert \simeq \Vert r^{(k)} \Vert")

1

 # Checking order q=1# Checking order q=1
2 0.354112 0.35411

3 0.071383 0.07138

4 0.000084 0.00008

5 0.000005 0.00000

6 0.000006 0.00000

7 0.000007 0.00000

Checking order q=2# Checking order q=2
2 0.301172 0.30117

3 0.171463 0.17146

4 0.002784 0.00278

5 0.065595 0.06559

6 0.067556 0.06755

7 0.067557 0.06755

Checking order q=3# Checking order q=3
2 0.256152 0.25615

3 0.411823 0.41182

4 0.093484 0.09348

5 26726.637245 26726.63724

6 171033902015.238346 171033902015.23834

7 6410486721954533487072506.398987 6410486721954533487072506.39898

As can be see the most constant is the sequence corresponding to , such that we conclude

that the method converges quadratically.

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

let

for q in (1, 2, 3)

println("# Checking order q=$q")

for k in 2:length(res.history_r)

ratio = norm(res.history_r[k]) / norm(res.history_r[k-1])^q

@printf "%i %.5f\n" k ratio
end

println()

end

end

1

2

3

4

5

6

7

8

9

10

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12 Bo nda al e oblems

https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

