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Revision and preliminaries
This chapter provides some rough and sketchy notes on concepts we will frequently need

throughout the course. It is strongly advised you read in carefully in your own time to remind

yourself.
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Taylor expansion and approximation

Given an infinitely differentiable function  its Taylor series at the point  is the infinite sum

where  is a short-hand for differentiating   number of times.
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Big O notation
Truncating this sum early (i.e. not summing all the way to infinity) is a frequent approximation

technique often termed Taylor approximation.

Here we choose the example of a second-degree approximation, i.e. truncating the sum at 

when we take at most two derivatives. We would thus get an approximation

Comparing with (1) we see

where  is usually called the remainder term.

As  the remainder  vanishes. More precisely it becomes small at least as fast as 

. The idea is that as  gets closer to  then  < 1, such that  for all 

. While some of the derivatives  may be large, there still is a point when  is so close to ,

such that  and still  for all .

Mathematically one writes as:

There exist positive constants  such that

or more compactly using big O notation as

Employing this within (2) we arrive at



This big O notation is thus a mathematically precise way of saying that there are more terms in the

expansion (3) that we don't show but their order is at most . Or more generally

Lagrange form of  the reminder
An important result of the study of Taylor approximations is, that the remainder term can in fact be

also expressed in terms of the next term of the Taylor approximation itself. Considering for example

the general approximation (4) we can find a  between  and  –- i.e. assuming  a number

 –- such that

holds. This is the so-called Lagrange form of the remainder. Note, how the red part is the next term

of the Taylor polynomial, just with the derivative evaluated at a (generally unknown) position .

Second-degree approximation (continued)

To return to our example of a second-degree approximation and assuming  we would

thus be able to write

for some .

Typical Taylor variants
In the above example we considered the expansion of  around a point  leading to an

expansion of the form

Another common setting is to expand a function  about . Replacing  by  in the

above expression directly yields



Second-degree approximation (continued)

Again in our second-degree example we would obtain

or using the Lagrange remainder

for some .

Vector spaces

From a physical point of view the concept of a vector space  boils down to a well-defined set of

objects, which are closed under linear combination. That is to say for two vectors  and

 and real scalars  we want to have that any linear combination is also a vector, i.e.

Provided that ask the scalar multiplication  and the vector addition  to satisfy a few basic

axioms, such as

 (  is commutative)

 and  (  and scalar multiplication are

distributive)

... (see Wikipedia for the full list)

we get a range of important properties, such as:

Concept of linear independence, i.e.  vectors  are linearly independent if the

only scalars  to obtain

https://en.wikipedia.org/wiki/Vector_space


are the zeros .

Existance of a basis, i.e. a set of  linearly independent vectors  such that all

elements of  can be generated as linear combinations of these vectors, i.e. for all  we

can find scalars  such that

Euclidean vector spaces
In this lecture when talking about vectors  without specifying any further details we usually refer

to elements of the Euclidean vector space , that is elements

Polynomials as vector spaces
Any polynomial  of degree less than  can be written as

where . Comparing with (5) immediately suggests the set of all polynomials of degree less

than  to be a vector space. This indeed can be shown to be the case.

In comparing with (5) we notice the monomials  to be a

possible choice for a basis.

Similar to Euclidean vector spaces this is not the only choice of basis and in fact many families

of polynomials are known, which are frequently employed as basis functions (e.g. Lagrange

polynomials, Chebyshev polynomials, Hermite polynomials, ...)

One basis we will discuss in the context of polynomial interpolation are Lagrange

polynomials, which have the form

https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Lagrange_polynomial
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for .



⚠ TODO ⚠

Properties of scalar product (symmetry), matrix-vector product and ways to write it (as sum,

using vector transposes, connection to visual approach to perform operations))

Taylor expansions of  multi-dimensional

functions

Scalar-valued functions
We consider a function . It's second-order Taylor expansion around  can be

written as

where we introduced the gradient of  at 

which is a vector of first partial derivatives. Similarly the Hessian of  at  is the matrix of all

second partial derivatives



Example

We consider the function  defined as

and compute the second-order Taylor expansion at

First we compute the gradient 

Next the Hessian matrix 

Combining the results we get

which simplifies (after some algebra) to



Vector-valued function
Now we consider a vector-valued function . It's first-order Taylor expansion around

 can be written as

In this the Jacobian matrix  is the collection of all partial derivatives of , i.e.

Example

We consider the function  defined as

and compute its first-order Taylor expansion at

The Jacobian is

such that we arrive at



Again some algebra this is simplified to



⚠ TODO ⚠

Triangle inequality, triangle inequality for sums
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TODO("Triangle inequality, triangle inequality for sums")1
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