
Click here to view the PDF version.

https://teaching.matmat.org/numerical-analysis/02_Julia.pdf

The Julia programming language

Related exercise sheets

Sheet 0: Getting Started with Julia

Sheet 0: Basic Plotting in Julia

In this class we employ the Julia programming language for code examples and programming

exercises. In this notebook you will learn a little about why this choice has been made and some

details on how set it up and get started.

The Julia programming language

About the Julia programming language

About Pluto

Installing Julia

VirtualBox image

Installing on your own computer

Useful Julia resources

Get started with coding Julia

Overview of Julia learning resources

Comprehensive coverage

Tips and tricks

Cheatsheets

Getting help in Pluto

Getting Julia help in general

About the Julia programming language

You might wonder why in this course we have opted to employ the Julia programming language,

when Python seems to be the language of teaching.

Table of Contents

https://teaching.matmat.org/numerical-analysis/exercises/ex0_introduction_julia_pluto_statement.html
https://teaching.matmat.org/numerical-analysis/exercises/ex0_introduction_plots_statement.html
https://julialang.org/

What makes Julia particularly appealing for teaching topics in computational science are in my

opinion four things:

1. Accessible and mathematical syntax: Julia code resembles mathematical equations

extremely closely, sometimes literally 1:1. Julia code is thus close to pseudocode for many

algorithms.

2. Interactivity: Julia and Pluto (the environment we use) are well-suited for interactive

exploration. We will use this a lot in this class, e.g. by embedding sliders that allow you to

explore for yourself.

3. Julia can be fast: Since the language is compiled like C or Fortran (and in contrast to Matlab

or Python) basic constructs like for loops are surprisingly fast. For you this means that even

without worring about performance, your code can actually be tested on interesting

problems, which usually are the ones, where we need mathematical insight to get things

working.

4. Growing interest in industry and academic jobs: Experience in using Julia starts to be a

criterion on the Job market, e.g. LinkedIn Jobs or JuliaCon discourse

About Pluto

What makes using Julia with Pluto particularly nice is the easy interactivity. We will use this a

bunch in this class. For example consider the plot of the two functions

f (generic function with 1 method)

g (generic function with 1 method)

where we choose the parameters via a slider

a =

b =

1.0

-1.0

f(x) = a * x1

g(x) = 5 + b * x1

https://www.linkedin.com/jobs/search/?currentJobId=4093938918&keywords=julia&position=1&pageNum=0
https://discourse.julialang.org/c/jobs/62

What is the point where the two curves intersect?

Exercise

Code the expression that gives the coordinate:

x missing =

Missing Response

Replace missing with your answer.

Hint

x = missing1

Note how the computed intersection appeared above !

A good introduction to pluto are the featured notebooks on https://plutojl.org, for example:

Basic mathematics with pizzas

Markdown and text

Comparison with Jupyter notebooks

Installing Julia

A working Julia installation is provided to you as part of the VirtualBox image you can download on

moodle.

Alternatively, you can install Julia on your own computer. It is not difficult and will be a nicer

experience than working inside a Virtual Machine, however assistants will only be able to provide

limited help with installation problems.

Assistants are there to provide support during the first week and you are welcome to ask for help.

After that, Julia is assumed to be installed and working, and there will be a check in the second

exercise session.

VirtualBox image
See the Virtual Machine Installation Instructions document on moodle.

Installing on your own computer
If you want to install Julia on your computer (it's not difficult !), take a look at the installation notes

of MIT's computational thinking class or watch:

https://plutojl.org/
https://featured.plutojl.org/basic/basic%20mathematics
https://featured.plutojl.org/basic/markdown
https://featured.plutojl.org/basic/pluto%20for%20jupyter%20users
https://go.epfl.ch/numerical-analysis
https://go.epfl.ch/numerical-analysis
https://go.epfl.ch/numerical-analysis
https://computationalthinking.mit.edu/Fall24/installation/

How to Install Julia and Pluto | Week 1, lecture 2 | 18.S191 MIT Fall 2020How to Install Julia and Pluto | Week 1, lecture 2 | 18.S191 MIT Fall 2020

Essentially this boils down to:

Download Julia 1.11.3 for your operating system from https://julialang.org/downloads.

Windows users can install Julia in the Microsoft store.

Start Julia, e.g. by starting the Julia 1.11.3 from your program menu or by executing julia in a

Terminal.

Install Pluto, the notebook environment that we will be using in this course. Note, that Pluto

is not the only way you can run Julia, but it is particularly well-suited for the quick and

interactive experiments we will perform. To install Pluto run in your Julia REPL:

import Pkg
Pkg.add(; name="Pluto", version="0.20.4")

Run Pluto: Still in the REPL execute

import Pluto
Pluto.run()

See the installation notes of MIT's computational thinking class for more details.

The exercise notebooks are written and tested with Julia 1.11.3 and Pluto 0.20.4. These are the

versions installed inside the Virtual Machine. Prefer those.

https://www.youtube.com/watch?v=OOjKEgbt8AI
https://julialang.org/downloads
https://www.microsoft.com/store/apps/9NJNWW8PVKMN
https://github.com/fonsp/Pluto.jl
https://computationalthinking.mit.edu/Fall24/installation/

Useful Julia resources

Get started with coding Julia

Mathematics with Pizzas

Some language processing

Plots.jl tutorial

Overview of Julia learning resources

Learning Julia

Comprehensive coverage

Programming for Mathematical Applications course at UC Berkeley

Think Julia: How to Think Like a Computer Scientist

Official Julia documentation

Tips and tricks

Modern Julia Workflows

Cheatsheets

General syntax cheatsheet

Comparative cheatsheet Python <-> Julia <-> Matlab

Plots.jl cheatsheet

Getting help in Pluto

Pluto has a built-in live documentation, which is very useful. Just type in a cell ? <keyword> to get

started, e.g. to learn about the plot function type ?plot .

?plot1

https://featured.plutojl.org/basic/basic%20mathematics
https://featured.plutojl.org/language/structure%20and%20language
https://docs.juliaplots.org/latest/tutorial/
https://julialang.org/learning
http://persson.berkeley.edu/Programming_for_Mathematical_Applications/
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://docs.julialang.org/
https://modernjuliaworkflows.org/
https://cheatsheet.juliadocs.org/
https://cheatsheets.quantecon.org/
https://www.github.com/sswatson/cheatsheets/blob/master/plotsjl-cheatsheet.pdf

Getting Julia help in general

The EPFL-internal Matrix server (element.epfl.ch) has a Julia Lang room. You can logon to this

server using your Gaspar identification and from there you should be able to join this public

room.

Julia's discourse forum is full of many helpful people and its search feature is a useful resource

for answers to many beginner's questions.

Some more advanced resources is the official JuliaLang documentation as well as the Modern

Julia Workflows project.

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

file:///tmp/element.epfl.ch
https://element.epfl.ch/#/room/#julia:epfl.ch
file:///tmp/discourse.julialang.org/
https://docs.julialang.org/en/v1/
https://modernjuliaworkflows.github.io/
https://modernjuliaworkflows.github.io/
https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

