
Click here to view the PDF version.

Introduction

Opening remarks

Interpolating data

Taking derivatives

Solving differential equations

Modelling electric circuits

Block installing Julia packages needed to run this notebook.

begin

using Plots

using PlutoUI

using PlutoTeachingTools

using LaTeXStrings

using Symbolics

using NLsolve

using HypertextLiteral

end

: @htl, @htl_str

1

2

3

4

5

6

7

8

9

10

Table of Contents

https://teaching.matmat.org/numerical-analysis/01_Introduction.pdf

Introduction

Opening remarks

Slides of the presentation: These summarise the following paragraphs and the content of the course

in a short presentation. .

In modern practice every scientist employs computers. Some use them to symbolically derive

equations for complex theories, others perform simulations, yet others analyse and visualise

experimental results. In all these cases we encounter mathematical problems, which we need to

solve using numerical techniques. The point of this lecture is to learn how to formalise such

numerical procedures mathematically, implement them using the Julia programming language

and analyse using pen and paper why some methods work better, some worse and some not at all.

You might think learning about this is a bit of an overkill and probably not very useful for your

future studies. But let us look at a few examples, which give an overview what we will study in more

depth throughout the course.

Interpolating data

We start with the following problem: Imagine we did some measurement of the rate of a chemical

reation at different temperatures, let's say

data = """

Temperature(K) Rate(1/s)
 250.0 1.51756

 260.0 1.59566

 270.0 1.67888

 280.0 1.78110

 290.0 1.95476

 300.0 2.20728

 310.0 2.08967

 320.0 2.03635

 330.0 2.05474

 340.0 2.09338

 350.0 2.13819
""";

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://teaching.matmat.org/
https://julialang.org/

Now we are curious about the rates at another temperature, say . The basic laws of

thermodynamics and chemical kinetics tell us that the rate should be a continuous function of the

temperature. For example Arrhenius' law

establishes such a relationship, where , and are some constants. Note, that in this case the

behaviour is more complicated as is immediately obvious from a plot of the observed data:

Still, it seems reasonable that we should be able to determine some continuous function from

the observed data, which establishes a good model for the relationship . Albeit

has not been measured, we can thus evaluate and get an estimate for the rate at this

temperature. Since the new temperature islocated within the observed data range (i.e. here

 to) we call this procedure interpolation.

In this lecture we will discuss some common interpolation techniques. In particular we will develop

the mathematical formalism for these techniques and –- most importantly –- we will use this

formalism to understand conditions when these methods work and when these methods fail.

https://en.wikipedia.org/wiki/Arrhenius_equation

In fact our example here is already a little tricky. Let us illustrate this point for polynomial

interpolation, one particularly frequent technique. Without going into details for now, one basic

idea is to fit a polynomial of degree

to the data. By some procedure discussed later we thus determine the unknown polynomial

coefficients , such that the polynomial best matches our observations and use that to determine

.

Let's see the result of such a fit. The slider let's you play with the polynomial order:

N = 1

Clearly, the quality of such a fit depends strongly on the polynomial order. Perhaps suprising is,

however, that higher degree is not necessarily better. We will discuss why this is.

Related questions we will discuss:

How can I fit a polynomial to data points ?

How accurate can I expect such a polynomial fit to be ?

Can I choose an optimal polynomial order to obtain the most accurate answer ?

If I have control over the strategy to acquire data (e.g. how to design my lab experiment),

can I have an influence on the accuracy of such interpolations ?

Taking derivatives

Derivatices characterise the change of a quantity of interest. E.g. the acceleration as a derivative of

the velocity indeed characterises how the velocity changes over time.

In a nutshel understanding changes of a materials or any other physical system as we interact with

it, is the essential goal of pretty much every field of science and engineering.

As a result derivatives are everywhere. But computing derivatives by hand is not always easy. To see

this consider the innocent-looking velocity function.

v (generic function with 1 method)

We can plot it to get an idea:

v(t) = 64t * (1 − t) * (1 − 2t)^2 * (1 − 8t + 8t^2)^21

Clearly between and the function changes quite rapidly. To investigate the acceleration there

we take the derivative.

This can be done by hand, but instead we will employ a Julia package (namely Symbolics) to take

the derivative for us. The result is:

let

p = plot(v;

 ylims=(-10, 2), # Limit on y axis

 xlims=(-0.5, 1.5), # Limit on x axis

 linewidth=2, # Width of the blue line

 label="Velocity", # Label of the graph

 xlabel="t",

 ylabel="v")

end

1

2

3

4

5

6

7

8

9

let

@variables t # Define a variable

dt = Differential(t) # Differentiating wrt. t

dv_dt = dt(v(t)) # Compute dv / dt

expand_derivatives(dv_dt)

end

1

2

3

4

5

6

https://symbolics.juliasymbolics.org/

Clearly far from a handy expression and not the kind of derivative one wants to compute by hand.

So let us compute this derivative numerically instead. An idea to do so goes back to the definition

of the derivative as the limit of the slope of secants over an intervall , i.e.

A natural idea is to not fully take the limit, i.e. to take a small and approximate

The expectation is that as we take smaller and smaller values for , this converges to the exact

derivatives.

So let's try this at the point t0 = 0.2 for various values for h

h_values

[1.0e-15, 3.16228e-15, 1.0e-14, 3.16228e-14, 1.0e-13, 3.16228e-13, 1.0e-12, 3.16228e-12, 1

 =

We compute the derivatives at each value for ...

derivatives

[8.99281, 9.0755, 9.05942, 9.06497, 9.06719, 9.06567, 9.06603, 9.06608, 9.06609, 9.06609,

 =

... and compute the error against a reference value:

[0.0732799, 0.00941812, 0.00666652, 0.00111438, 0.00110504, 0.000412217, 6.06921e-5, 8.47

Finally we plot the errors on a log-log plot:

h_values = 10 .^ (-15:0.5:1)1

derivatives = [(v(t0 + h) - v(t0))/h for h in h_values]1

begin

using ForwardDiff # Package for computing derivatives of Julia functions

reference = ForwardDiff.derivative(v, t0)

errors = [abs(d - reference) for d in derivatives]
end

1

2

3

4

5

6

We observe that while indeed initially the error decreases as decreases at some point it starts to

increase again with results worse and worse.

With this slider you can check this is indeed the case for pretty much all values of where we take

the derivative numerically:

t0 = 0.2

Related questions we will discuss:

let

plot(h_values, errors;

xaxis=:log, yaxis=:log,

xflip=true, # Flip order of x axis

 ylims=(1e-8, 1),

mark=:o, # Mark all points by circle

xlabel="h",

ylabel="Absolute error",

linewidth=2,

label="",

xticks=10.0 .^ (-16:2:0),

title="Error of derivative at t = $t0",

)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

There seems to be some optimal value for . Is it independent of the function to be

differentiated ?

Here seems to be some minimal error we can achieve. Are there more accurate derivative

formulas ?

The convergence plot as decreases seems to have the same slope (convergence rate) for

all points . Does this slope depend on ? How can we reach faster convergence ?

Solving differential equations

Modelling electric circuits

Let us consider the simple Diode model circuit

which consists of

Some voltage source, generating a voltage

A resistor with the linear relationship

between the current and its voltage .

A diode for which we will take the standard Shockley diode model, i.e. the equation

https://en.wikipedia.org/wiki/Diode_modelling

between the diode's current and voltage . and are parameters, which characterise

the diode.

We now want to solve this problem numerically. This notebook already defines variables for the

parameters , , and . This is done using sliders, which you find further down this notebook.

Currently these variables have the values

R = 1.0

V = 1.0

i0 = 1.0

v0 = 0.1

In Julia code we can thus define the Shockley diode relationship, mapping to as follows

shockley_diode (generic function with 1 method)

Graphically for above parameters this looks like

function shockley_diode(vD)

i0 * (exp(vD/v0) - 1)

end

1

2

3

Our goal is to model this circuit, i.e. understand its current the voltages across the circuit

elements.

First we balance the supplied voltage across the circuit. Using equations (1) and (2) this leads to

the following:

We introduce the function

let

p = plot(shockley_diode, xlim=(-1, 0.3);

 label="Shockley model",

 xlabel=L"Diode voltage v_D",

 ylabel=L"Current i",

 linewidth=2)
plot!(p, v -> (i0/v0) * v;

 label=L"Slope i_0 / v_0",

 linestyle=:dash,

 linewidth=2)

end

1

2

3

4

5

6

7

8

9

10

11

which makes (3) equivalent to seeking a diode voltage such that –- a root finding

problem.

However, since is not just a simple polynomial, but a non-linear function there is no explicit

analytic formula for finding its solution. We are thus forced to employ numerical methods.

As we will see in the next lectures there are a number of numerical techniques to solve such

nonlinear problems . However, similar to polynomial fitting, none of them always just

work. In this case we are lucky and can actually directly defer to a standard package of the Julia

programming language, called NLsolve to solve our problem:

[0.0659611]

which for the parameters

i0 =

v0 =

R =

V =

1.0

0.1

1.0

1.0

tells us the root is located at 0.066. We can also check this graphically:

begin

Define our function

f(vD) = R*i0*(exp(vD/v0) - 1) + vD - V

Solve it with nlsolve

z = nlsolve(v -> f(v[1]), [0.0]).zero

end

1

2

3

4

5

6

7

Given this nice NLsolve package, which seems to do the trick automatically, you might wonder why

we even bother discussing, analysing and implementing such techniques at all.

Well, unfortunately for many realistic numerical settings (e.g. the quantum-chemical simulation of

materials) even standard packages such as NLsolve are no longer able to automatically figure out

the best solution strategy. As a result developing some intuition for the required numerical

procedure.

Even if you now might think, that your heart beats for experimental research and you will never

need numerics, keep in mind that all data analysis uses procedures based on such techniques.

Even commercial packages for experimental post-processing rely heavily on the procedures we will

cover and sometimes get it wrong}}. See for example this report on Microsoft Excel). This **can

and has compromised scientific fundings in the past. Therefore it's best to be prepared, so you

can judge what is wrong: The experiment or the numerics.

let

vs = range(-0.5, 0.5; length=100)

plot(vs, f.(vs); xlims=(-0.5, 0.5), ylims=(-3, 3), legend=:topleft,

 label=L"f", linewidth=2, xlabel=L"v_D", ylabel=L"f(v_D)")

hline!([0], linestyle=:dash, linewidth=2, label=L"f(v_D) = 0")

scatter!(z, [0], label="NLsolve solution")
end

1

2

3

4

5

6

7

https://www.economist.com/graphic-detail/2016/09/07/excel-errors-and-science-papers

Related questions we will discuss:

How can I understand whether an obtained numerical answer is credible ?

What techniques based on visualisation or plotting help me to understand the accuracy of

a numerical algorithm ?

How can I overcome numerical issues ?

What are numerically stable techniques for interpolation, basic data analysis or solving

standard scientific problems ?

How can I understand and evaluate the speed of convergence of an algorithm and

improve it even further ?

Numerical analysis

1. Introduction

2. The Julia programming language

3. Revision and preliminaries

4. Root finding and fixed-point problems

5. Interpolation

6. Direct methods for linear systems

7. Iterative methods for linear systems

8. Eigenvalue problems

9. Numerical integration

10. Numerical differentiation

11. Initial value problems

12. Boundary value problems

https://teaching.matmat.org/numerical-analysis/
https://teaching.matmat.org/numerical-analysis/01_Introduction.html
https://teaching.matmat.org/numerical-analysis/02_Julia.html
https://teaching.matmat.org/numerical-analysis/03_Preliminaries.html
https://teaching.matmat.org/numerical-analysis/04_Nonlinear_equations.html
https://teaching.matmat.org/numerical-analysis/05_Interpolation.html
https://teaching.matmat.org/numerical-analysis/06_Direct_methods.html
https://teaching.matmat.org/numerical-analysis/07_Iterative_methods.html
https://teaching.matmat.org/numerical-analysis/08_Eigenvalue_problems.html
https://teaching.matmat.org/numerical-analysis/09_Numerical_integration.html
https://teaching.matmat.org/numerical-analysis/10_Numerical_differentiation.html
https://teaching.matmat.org/numerical-analysis/11_Initial_value_problems.html
https://teaching.matmat.org/numerical-analysis/12_Boundary_value_problems.html

